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Abstract

Evaluation of item ft for item response theory (IRT) models often involves a comparison of the 

observed and expected item response functions (IRFs). Several statistics have been suggested for 

evaluating item ft based on the discrepancy between IRFs, but the asymptotic distributions of the 

statistics under the null hypothesis are often not well established. Haberman et al. developed a 

method for evaluating the ft of IRFs based on generalized residuals. These residuals are functions 

of the latent profciency variable in the IRT model and follow the standard normal distribution 

asymptotically. We develop a method to summarize these generalized residuals into a single 

summary statistic for each item and evaluate its asymptotic distribution. Kondratek suggested a 

similar Wald-type statistic, but without accounting for the uncertainty in the estimation of the 

item parameters. Our method combines the work of Haberman and Kondratek, resulting in a 

single ft statistic per item while accounting for estimation error. A series of simulations was 

carried out to investigate the performance of our statistic and compare it to several popular item 

ft statistics. Our method resulted in similar Type I errors as Kondratek’s statistic, with slightly 

better results in the case of small samples. Furthermore, the recovery was consistent across 

diferent levels of item difculty, and power of the new item ft statistic was relatively low, except 

for problematic individual items, but this result was found with two competing statistics as well. 

Keywords: Item ft; generalized residuals 
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Introduction 

In item response theory (IRT) modeling, item ft analysis is an important aspect in evaluating the 

accuracy of the item response function (IRF). Incorrect IRF specifcation can lead to incorrect 

scoring and fairness issues. An often-used method to evaluate item ft is to compare observed and 

expected IRFs. Several statistics have been developed to summarize the diferences between IRFs, 

but null distributions are not available for some common cases, such as the INFIT (Wright & 

Panchapakesan, 1969) and root-mean-squared deviation (Oliveri & von Davier, 2011). Although 

methods like the bootstrap (Silva Diaz et al., 2022) and jackknife (Robitzsch, 2022) can overcome 

issues with asymptotics at the cost of computational time, it would be better to work with item 

ft statistics that have known asymptotic properties under a wide range of conditions. 

In general, two main approaches can be distinguished in developing a chi-square statistic 

based on residuals between the observed and expected IRFs. Though both use a general framework 

whereby residuals are frst computed by grouping individuals according to specifc ranges of ability 

(“bins”) and then summarized into a single χ2 statistic, the defnition of bins varies. In the frst 

approach, IRFs are evaluated based on the estimate of the latent variable (θ̂) that explains the 

dependencies between items. Such indices include Bock’s (1972) χ2 statistic and Yen’s (1981) 

Q1 statistic. Their use of ability estimates in creating bins renders uncertainty in the true null 

distribution of the statistics, an ensuing problem with model-dependent statistics. A related 

consequence appears in their infated Type I error and low power, particularly with short tests 

(Chon et al., 2010). The second approach, for example that used to derive Orlando and Thissen’s 

(2000) S-X2 , avoids the use of θ̂  by grouping examinees based on their total score (i.e., the sum of 

scored responses to all items). While its Type I error rate is typically close to the nominal level, a 

concern with using S-X2 is its low power (Stone & Zhang, 2003). 

Haberman et al. (2013) developed a method for evaluating the ft of IRFs based on 

generalized residuals. This method produces asymptotically standard normal residuals as a 

function of the latent ability variable in the IRT model. The main goal of our research is to 

correctly combine these generalized residuals across the ability scale into a single summary 

statistic and establish its asymptotic distribution. Instead of using ability points to evaluate the 

IRFs, we make use of ability intervals, as Stone (2000) suggested. This results in a Wald-type 

test, which is assumed to have a chi-squared distribution. Recently, Kondratek (2022) conducted 

an extensive simulation study to evaluate a clever version of this statistic. However, his version 
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does not account for the fact that item parameters are estimated. We extend his statistic by 

accounting for the uncertainty in the estimation of item parameters. 

A series of simulations is carried out to investigate the performance of this statistic under 

a variety of circumstances for the unidimensional two-parameter logistic (2PL) model (Birnbaum, 

1968) and make comparisons to other commonly used item ft statistics. A beneft of using the 

theory behind generalized residuals is that, in principle, it can be easily extended, not only to 

other IRT models, including multigroup and multidimensional models, but also to models with 

response times (Sinharay & van Rijn, 2020). 

Method 

Item Response Theory Models 

For a unidimensional 2PL model, the IRF for item j is given by 

exp(aj θ + bj ) 
p(Xj = 1|θ) = pj (θ) = , (1)

1 + exp(aj θ + bj ) 

where θ is the ability parameter, aj is an item slope parameter, and bj is an item intercept 

parameter. We also consider more complex models as the data-generating model, such as the 3PL 

and 4PL. The IRF of the unidimensional 4PL (Barton & Lord, 1981) is given by 

exp(aj θ + bj ) 
p(Xj = 1|θ) = pj (θ) = cj + (dj − cj ) , (2)

1 + exp(aj θ + bj ) 

where cj and dj are lower and upper asymptotes, respectively, to accommodate guessing and 

slipping behaviors on the test. 

If a normal density f(θ) is assumed for the latent variable, the posterior of θ is 

p(x|θ)f(θ) 
g(θ|x) = R , (3) 

p(x|θ)f(θ)dθ 

where p(x|θ) is the likelihood of item response vector x, typically under the assumption of local 

independence. In marginal maximum likelihood estimation of item parameters, the mean and 

standard deviation of f(θ) are typically fxed to 0 and 1, respectively, for the purpose of model 

identifcation, although identifcation issues may persist for the 3PL and 4PL models. 
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Derivations of New Item-Fit Statistic With Known Item Parameters 

Let’s frst consider the case in which all parameters of a 2PL IRT model are known. Then, the 

expected IRF is given by Equation 1. 

An alternative estimate of the IRF, or (pseudo-)observed IRF, is 

p̃j (θ) = 

PN 
i=1 xijg(θ|xi) 

,PN 
i=1 g(θ|xi) 

(4) 

where xi = (xi1, xi2, . . .) is the item response vector of test taker i, i = 1, . . . , N . The residual of 

the expected and observed IRFs, referred to as the residual IRF, is 

rj (θ) = p̃j (θ) − pj (θ). (5) 

The estimated asymptotic variance of the residual IRF is 

s 2 [p̃j (θ)] = 

PN {g(θ|xi) [xij − p̃j (θ)]}2 
i=1 .i2hPN 

i=1 g(θ|xi) 
(6) 

When the IRT model fts the data, the generalized residual IRF defned as zj (θ) = [rj (θ)]/{s[p̃j (θ)]} 

converges in distribution to a standard normal variable (Haberman et al., 2013). 

It would be tempting simply to take the sum of squared generalized residuals zj (θ) over 

a selected number of θ points (e.g., the quadrature points) as a summary statistic, but such a 

sum does not have a known asymptotic null distribution. Kondratek (2022) used intervals based 

on θ (“bins”) instead of θ points to construct observed and expected proportions correct at given 

intervals. Let ∆j1, . . . , ∆jK denote K nonintersecting intervals that cover the real line for item j. 

The intervals can be, for example, based on quantiles of the density f(θ), so that they are fxed 

across items, or adjusted by item difculty to maintain roughly equal expected proportions for 

each interval. In the latter case, the intervals would be item specifc. Such adaptive intervals 

can be constructed as in Kondratek (2022), where njkEjk(1 − Ejk) is kept constant over k, with 

njk denoting the expected number of observations in the kth bin under f(θ) for item j and Ejk

denoting the expected proportion of correct responses in the kth interval given by, respectively, Z 
njk = N f(θ)dθ (7) 

∆jkR 
pj (θ)f(θ)dθ 

Ejk = 
∆Rjk . (8)

f(θ)dθ∆jk
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We can then denote the conditional probability that θ falls into ∆jk given response vector xi as Z 
τijk = g(θ|xi)dθ. (9) 

∆jk

The observed proportion of correct responses in interval ∆jk is then given by PN 
i=1 xij τijk 

Ojk = PN . (10) 
i=1 τijk 

An alternative expected proportion of correct responses for item j can be based on the 

item response vector without item j, denoted by xi\j (see, e.g., Kondratek, 2022, Equation 12). It 

can be argued that doing so purifes the calculation of the expected proportion of the scrutinized 

item, which results in Z 
eijk = pj (θ)g(θ|xi\j )dθ (11) P 

∆ 

N 
jk 

i=1 eijkτijk 
E ∗ 

jk = PN . (12) 
i=1 τijk 

In calculating τijk, one would have to then also use g(θ|xi\j ) instead of g(θ|xi). However, 

Kondratek does not mention this point, and because excluding the item complicates the 

computation, we retain it for simplicity. 

Asymptotic normality of the Ojk holds if the observed and expected frequencies (i.e., the 

numerators in Equations 10 and 12) are not too small. One typical rule of thumb is that both 

njkEjk and njk(1 − Ejk) should be larger than 20 (Kondratek, 2022). The covariance matrix Vj

of Oj has elements PN 
i=1 τikτil(xij − Ojk)(xij − Ojl) 

vjkl = PN PN . (13) 
i=1 τik i=1 τil

Kondratek then defned a Wald-like item ft statistic as 

XW 
2 

j 
= (Oj − Ej ) 

′ Vj 
−1 (Oj − Ej ) , (14) 

which has an asymptotic chi-squared distribution with K degrees of freedom. 

Derivations of New Item-Fit Statistic With Estimated Item Parameters 

Under a 2PL model, the expected IRF with estimated item parameters is 

exp(âj θ + b̂j ) 
p̂j (θ) = . (15) 

1 + exp(âj θ + b̂j ) 
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Again, the alternative estimate of the IRF is PN 
i=1 xij ĝ(θ|xi) 

p̄j (θ) = PN , (16) 
ĝ(θ|xi)i=1 

where ĝ(θ|xi) is the estimated conditional density of θ given item response vector xi using 

estimated item parameters. The residual IRF is 

r̂j (θ) = p̄j (θ) − p̂j (θ). (17) 

Haberman et al. (2013) noted that the estimate in Equation 16 is a ratio so that standard 

formulas can be applied to obtain the variance of the residual. This variance is found in Equation 

46 of their paper: h i2PN ĝ(θ|xi) [xij − p̂j (θ)] − [ĉj (θ)] 
′ ∇ℓi(ξ̂)i=1 

s 2(r̂j (θ)) = i2 , (18)hPN ĝ(θ|xi)i=1 

where 
NX

ˆ J−1 ˆ pj(θ)] ∇ℓi(ξ̂) (19)cj (θ) = N−1 ̄  g(θ|xi) [xij − ˆ 
i=1 

and 
NX h i′

J̄ = N−1 ∇ℓi(ξ̂) ∇ℓi(ξ̂) . (20) 
i=1 

When the IRT model fts the data, the generalized residual IRF ẑj (θ) = [r̂j (θ)]/{s[r̂j (θ)]} 

converges in distribution to a standard normal variable (Haberman et al., 2013). 

We aim to fnd the K × K covariance matrix of the diference between the observed and 

expected proportion of correct responses in the intervals for estimated item parameters denoted 

by V̂ 
j . We denote the conditional probability that θ falls into ∆jk given response vector xi using 

estimated item parameters as Z 
τ̂ijk = ĝ(θ|xi)dθ. (21) 

∆jk

The observed proportion of correct responses in interval ∆jk is then given by PN 
i=1 xij τ̂ijk 

Ôjk = PN . (22) 
i=1 τ̂ijk 

The expected proportion of correct responses in interval ∆jk is Z 
Êjk = p̂j (θ)f(θ)dθ, (23) 

∆jk
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where f(θ) is the standard normal density (i.e., the mean and standard deviation are fxed for 

model identifcation). Again, asymptotic normality of the Ôjk holds if the observed and expected 

frequencies are not too small. The estimated asymptotic covariance matrix V̂ 
j of Ô 

j − Ê 
j has 

elements (k, l): h i h iPN ′ ′ 
i=1 τ̂ijkτ̂ijl xij − Ôjk − ĉjk∇ℓi(ξ̂) xij − Ôjl − ĉjl∇ℓi(ξ̂)

v̂jkl = PN PN , (24) 
i=1 τ̂ijk i=1 τ̂ijl 

where 
NXh i 

′ J−1ĉ = N−1 ̄  xij − Ôjk ∇ℓi(ξ̂) (25)jk 
i=1 

′ and ĉ is defned analogously. jl 

The item ft statistic for estimated item parameters is then defned by � �′ � � 
X̂ 

W 
2 

j 
= Ô 

j − Ê 
j V̂ 

j
−1 Ô 

j − Ê 
j , (26) 

which has an asymptotic chi-squared distribution with K − p degrees of freedom, where p is the 

number of estimated item parameters (i.e., 2 in the case of the 2PL). 

Simulation 

We conducted two simulation studies to evaluate the Type I error and power of our statistic 

X̂ 
W 
2 in comparison with XW 

2 (note that we drop the item index j for convenience). Both 

statistics are computed by plugging in the item parameter estimates as if they were the true 

parameters, but X2 does not correct for the uncertainty in parameter estimates and is close toW 

Kondratek’s (2022) statistic. In addition, two other well-known item-ft statistics were used in 

the comparison—Orlando and Thissen’s (2000) S-X2 and Yen’s (1981) Q1—and we used the R 

package mirt (Chalmers, 2012) to calculate them. 

Simulation 1: Type I Error 

In the frst simulation study, we manipulated three factors: (a) number of θ intervals (three and 

fve adaptive bins), (b) test length (20 and 40 items), and (c) sample size (200, 500, and 1,000). 

The smaller sample of 200 was intended to explore how the ft statistics were afected by an 

increased amount of uncertainty in item parameter estimates. The three factors were crossed with 

each other. 
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Table 1. Type I Error (%) of ˆ 2XW , S-X2 , and Q1, 200 Replications, X2 

K Test length (items) Sample size 

W 

3 20 200 5.60 5.50 4.56 6.80 
500 5.90 5.90 4.90 18.50 
1,000 5.40 5.35 5.00 52.17 

40 200 6.10 5.97 4.27 4.43 
500 4.98 4.92 4.85 5.91 

2XW 

1,000 5.40 5.40 4.90 8.49 
5 20 200 7.70 7.45 4.56 6.80 

500 6.45 6.45 4.90 18.50 
1,000 5.00 5.00 5.00 52.17 

40 200 7.95 7.75 4.27 4.43 
500 5.82 5.78 4.85 5.91 
1,000 5.78 5.73 4.90 8.49 

ˆ 2XW S-X2 Q1 

of the 12 simulation conditions, 200 replications performed. The empirical Type I ratewere error 

for each individual statistic computed by averaging the proportions signifcant all itemswas across 

Table 1 shows the Type I for the simulation conditions the 5% level. Inrates aterror 

the high Type I for Q (unreasonably high, given shorter tests), statisticcontrast to rateerror our1 

ˆ 2 2X is comparable S X in regards the Type I being close the nominal level. Also,to to to- errorW 

ˆ 2 2X similar those of Xtoare 

We generated item response data using the unidimensional 2PL model. The item 

parameters were generated from the distributions log aj ∼ N(0, 0.25) and bj ∼ N(0, 0.8) and the 

respondent profciencies were generated from a standard normal distribution. The response data 

were then calibrated with the 2PL model, and all four item ft statistics were calculated. For each 

and replications. 

the Type I error rates of , indicating that accounting for the 

ˆ 2XW 

WW 

uncertainty in the estimated parameters did not infate the error rate. 

We further examined the relationship between item difculty and the p-value of the 

statistic for the simulated data to understand the impact of item difculty and the use of adaptive 

bins on Type I error. 

X̂ 2Figure 1 shows how the p-value of is related to item difculty using spline smoothing. W 

Under the 2PL model, the p-values should have a uniform distribution so that the smoothed 

average is expected to be around .5. Although the adaptive bins aim to maintain constant 
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X̂ 2Figure 1. Relationship between item difculty and p-value of W . Solid lines represent the 
smoothed functions of p-value in relation to item difculty across items in all 200 replications 

under diferent conditions, whereas the dashed line is an extreme p-value level .05. 

proportions within each interval, Type I errors were largely infated for N = 200, presumably 

because of a small number of respondents in some intervals for very difcult items. 

Simulation 2: Power 

The second simulation study compared the power of the ft statistics. Because the Type I error 

rate of Yen’s (1981) Q1 is excessively high (see Table 1), we excluded it from the power analysis. 

We considered similar factors as in the previous analysis and additionally manipulated 

the generating model (GM) to detect misft. Specifcally, we used the following three scenarios 

to introduce misft. In the frst scenario, the calibrating model (CM) has fewer parameters than 

the GM, where we consider more complex 3PL and 4PL models as the GM. The IRF of the 

unidimensional 4PL model (Barton & Lorde, 1981) is given by 

exp(âj θ + b̂j ) 
p̂j (θ) = cj + (dj − cj ) , (27) 

1 + exp(âj θ + b̂j ) 

ETS Research Report No. RR-25-13 © 2025 Educational Testing Service 9 

X. Liao et al.     Evaluation of Item Fit Based on IRT



−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
ro

ba
bi

lit
y

Bad1: Non−monotone low
Bad2: Flat middle
Bad3: Wiggly

Figure 2. Item response functions for three types of misftting items. 

where cj and dj are lower and upper asymptotes, respectively, to accommodate guessing and 

slipping behaviors on the test. If dj = 1, the preceding IRF reduces to that for the 3PL model. 

In this scenario, the GM can be either the 3PL model with log aj ∼ N(0, 0.25), bj ∼ N(0, 0.8) and 

cj ∼ Beta(8, 32) or the 4PL model with log aj ∼ N(0, 0.25), bj ∼ N(0, 0.8), cj ∼ Beta(8, 32), and 

dj ∼ Beta(32, 8). The second scenario has a proportion of only 10% of misftting items, with the 

data for misftting items being generated from either the 3PL or 4PL model. In the third scenario, 

we add three types of bad items one at a time, which is similar to the approach used by Sinharay 

(2006) and van Rijn et al. (2016). These bad items are as follows: 

‹ BAD1: Nonmonotone IRF in the lower region of θ 

1 
P (Y = 1|θ) ≡ logit−1(−4.25(θ + 0.5)) + logit−1(4.25(θ − 1))

4 

‹ BAD2: Flat IRF in the middle region of θ 

P (Y = 1|θ) ≡ 0.55logit−1(5.95(θ + 1)) + 0.45logit−1(5.95(θ − 2)) 

‹ BAD3: Wiggly, nonmonotone IRF 

P (Y = 1|θ) ≡ 0.65logit−1(1.5θ) + 0.35logit−1(sin(3θ)) 

Figure 2 presents the corresponding IRFs for the three types of misftting items. Regardless of the 

various GMs, we ft the 2PL model to the data. 
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Table 2. Power Rates (%) of ˆ 2XW , and S-X2 , 200 Replications 

2XW 

, X2 

K Test length (items) Sample size 

W 

ˆ 2XW S-X2 

Simulated 4PL, estimated 2PL 
3 20 200 6.45 

500 6.50 
1,000 7.30 

40 200 6.48 
500 6.75 
1,000 9.32 

5 20 200 7.10 
500 6.75 
1,000 6.30 

40 200 7.05 
500 6.48 
1,000 8.25 

Simulated 3PL, estimated 2PL 
3 20 200 11.45 

500 17.20 
1,000 29.20 

40 200 10.40 
500 15.72 
1,000 25.65 

5 20 200 11.50 
500 15.90 
1,000 26.45 

40 200 11.33 
500 14.70 
1,000 24.52 

6.20 
6.40 
7.30 
6.45 
6.73 
9.30 
6.95 
6.70 
6.20 
6.82 
6.40 
8.25 

11.30 
17.15 
29.15 
10.22 
15.65 
25.65 
11.15 
15.75 
26.25 
11.15 
14.47 
24.47 

4.20 
6.00 
5.70 
5.22 
4.72 
5.73 
4.20 
6.00 
5.70 
5.22 
4.72 
5.73 

4.70 
6.00 
6.85 
5.12 
5.40 
7.18 
4.70 
6.00 
6.85 
5.12 
5.40 
7.18 

W 

Note. 2PL = two-parameter logistic. 3PL = three-parameter logistic. 4PL = four-parameter 

W 

logistic. 

Table 2 shows the power rates of the three item ft statistics if the GM is either the 4PL 

model or the 3PL model and the CM is the 2PL model. In general, the power is low for detecting 

this type of misft. The X̂ 2 statistic provides slightly larger power rates for small samples than 

does X2 , and both produce larger rates than does S-X2 . 

Table 3 shows the power and false alarm rates of the three item ft statistics if, for 10% 

of the items, the GM is either the 4PL model or the 3PL model and the CM is the 2PL model. 

The power is in general smaller when the GM is the 4PL model than when it is the 3PL model. It 

may seem paradoxical that the 2PL model fts data generated under the 4PL better than it does 

under the 3PL. However, the IRF is more symmetric for the 4PL model that we considered (i.e., 
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Table 3. Power and False Alarm Rates (%) of ˆ 2XW , and S-X2 for 10% Misftting Items, 200, X2 

Replications 
W 

Power False Alarm Rate 
2XWW 

Simulated 10% 4PL, estimated 2PL 
3 20 200 6.00 6.00 7.50 5.89 5.72 4.65 

500 9.00 9.00 7.00 5.72 5.67 5.44 
1,000 8.50 8.50 10.00 5.06 5.00 5.61 

40 200 7.00 7.00 4.00 6.17 6.03 4.22 
500 8.00 7.75 6.75 5.28 5.19 4.83 
1,000 12.00 11.75 8.25 5.50 5.50 5.56 

5 20 200 6.50 6.50 7.50 6.89 6.78 4.65 
500 8.00 8.00 7.00 5.39 5.28 5.44 
1,000 8.50 8.50 10.00 5.56 5.56 5.61 

40 200 8.75 8.75 4.00 8.08 7.86 4.22 
500 11.75 11.75 6.75 5.33 5.28 4.83 
1,000 10.75 10.75 8.25 5.89 5.86 5.56 

Simulated 10% 3PL, estimated 2PL 
3 20 200 9.00 8.50 8.50 6.22 6.22 4.88 

500 14.50 14.50 9.50 6.00 5.83 5.67 
1,000 20.00 20.00 12.00 5.61 5.61 5.39 

40 200 8.00 8.00 6.50 5.89 5.72 4.30 
500 12.00 12.00 9.25 5.61 5.53 5.31 
1,000 22.50 22.50 8.25 5.78 5.72 5.31 

5 20 200 10.00 9.50 8.50 7.17 6.94 4.88 
500 14.00 14.00 9.50 5.44 5.39 5.67 
1,000 16.00 16.00 12.00 5.61 5.61 5.39 

40 200 10.50 10.00 6.50 8.00 7.81 4.30 
500 15.50 15.00 9.25 5.78 5.67 5.31 
1,000 22.75 22.75 8.25 6.14 6.11 5.31 

X̂ 2 X2 S-X2 X̂ 2 
WW S-X2K Test length (items) Sample size 

Note. 2PL = two-parameter logistic. 3PL = three-parameter logistic. 4PL = four-parameter 
logistic. 

the average c parameter is roughly 0.20 and the average d parameter is roughly 0.80) than for the 

3PL model (where the average c parameter is roughly 0.20 and the upper asymptote is fxed at 

1). As a result, the symmetric 2PL model can adapt more easily to scores simulated from the 4PL 

model. In general though, the power is low in all the conditions considered in Table 3. Type I 

error rates rates are not that diferent from those found in the frst simulation study (see Table 1). 

In Table 4, the power and false alarm rates of the three statistics for the three types 

of misftting items are shown. The power and false alarm rates of all three statistics are quite 

satisfactory for the frst bad-item type, except perhaps the false alarm rates with fve bins and 200 
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Table 4. Power and False Alarm Rates (%) of ˆ 2XW , and S-X2 for Three Types of Misftting, X2 

Items, 200 Replications 
W 

Power False alarm rate 

WX2 ˆ X22XW 
BAD1: Nonmonotone IRF in the lower region of θ 

3 20 200 96.00 96.00 79.00 5.53 5.26 4.24 
500 100.00 100.00 100.00 5.74 5.68 5.32 
1,000 100.00 100.00 100.00 5.68 5.58 5.95 

40 200 99.00 99.00 87.00 5.92 5.79 4.50 
500 100.00 100.00 100.00 5.13 5.08 4.55 

W 

1,000 100.00 100.00 100.00 5.59 5.51 5.33 
5 20 200 96.00 96.00 79.00 7.58 7.21 4.24 

500 100.00 100.00 100.00 6.16 6.11 5.32 
1,000 100.00 100.00 100.00 5.53 5.47 5.95 

40 200 100.00 100.00 87.00 7.77 7.56 4.50 
500 100.00 100.00 100.00 5.79 5.74 4.55 
1,000 100.00 100.00 100.00 5.67 5.59 5.33 

BAD2: Flat IRF in the middle region of θ 
3 20 200 33.00 33.00 16.00 5.21 5.11 5.17 

500 70.00 70.00 28.00 5.32 5.26 4.47 
1,000 96.00 96.00 63.00 5.47 5.47 5.63 

40 200 48.00 48.00 17.00 6.08 5.79 4.42 
500 83.00 83.00 44.00 5.03 4.95 5.11 
1,000 99.00 99.00 86.00 5.54 5.51 4.46 

5 20 200 36.00 34.00 16.00 7.26 7.16 5.17 
500 76.00 76.00 28.00 5.16 5.11 4.47 
1,000 97.00 97.00 63.00 5.58 5.58 5.63 

40 200 57.00 56.00 17.00 7.33 7.10 4.42 
500 91.00 91.00 44.00 5.69 5.54 5.11 
1,000 99.00 99.00 86.00 5.56 5.54 4.46 
BAD3: Wiggly, nonmonotone IRF 

3 20 200 6.00 6.00 8.00 5.53 5.47 4.82 
500 7.00 7.00 16.00 5.26 5.21 4.11 
1,000 8.00 8.00 26.00 5.00 4.95 4.58 

40 200 4.00 4.00 7.00 6.21 6.05 3.75 
500 8.00 8.00 16.00 4.92 4.85 4.66 
1,000 9.00 9.00 33.00 5.67 5.67 4.62 

5 20 200 9.00 9.00 8.00 7.42 7.32 4.82 
500 22.00 22.00 16.00 5.16 5.16 4.11 
1,000 40.00 40.00 26.00 5.21 5.21 4.58 

40 200 7.00 7.00 7.00 7.74 7.59 3.75 
500 34.00 34.00 16.00 5.46 5.36 4.66 
1,000 69.00 69.00 33.00 5.28 5.26 4.62 

ˆ 2XW S-X2 S-X2K Test length (items) Sample size 

Note. IRF = item response function. 
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respondents. For the second bad-item type, the power is lower for smaller samples and for S-X2 . 

X̂ 2 is slighter larger than that for X2The power for 

third bad-item type, the power is generally not great, except for 

WW for fve bins and 200 respondents. For the 

X̂ 2 and X2 

items, and 1,000 respondents. 

W 

Discussion 

W 

Our method combines ideas from the work of Haberman al. (2013) and Kondratek (2022),et 

resulting in a single ft statistic per item while accounting for estimation error of item parameters. 

The Type I error rates of our suggested statistic were similar to those of Kondratek’s statistic, 

even with small samples, in which case, item parameter uncertainty is substantial. In addition, 

the power of our item ft statistic was slightly larger compared to Kondratek’s statistic and 

considerably larger compared to Orlando and Thissen’s (2000) S-X2 statistic. However, the power 

to detect misft was generally low when data were simulated from the 3PL and 4PL models and 

analyzed using the 2PL model. Also, wiggly IRFs were hard to detect using all item-ft statistics 

considered in this paper. 

Although the results are generally promising, our simulations were limited in terms of the 

chosen IRT models and the comparisons that were made. So further work is needed in this area. 

In general, most item ft statistics can have problems in specifc situations (e.g., when there are 

foor or ceiling efects and the IRF is relatively fat), and our method is no exception. Nevertheless, 

our work contributes to the search for item ft statistics with good asymptotic properties that do 

not require additional computational burden to fnd the null distribution. In the future, we plan 

to extend the method to other IRT models, such as multidimensional IRT models and multigroup 

IRT models. 

with fve bins, 40 
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