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Abstract

Evaluation of item fit for item response theory (IRT) models often involves a comparison of the
observed and expected item response functions (IRFs). Several statistics have been suggested for
evaluating item fit based on the discrepancy between IRFs, but the asymptotic distributions of the
statistics under the null hypothesis are often not well established. Haberman et al. developed a
method for evaluating the fit of IRFs based on generalized residuals. These residuals are functions
of the latent proficiency variable in the IRT model and follow the standard normal distribution
asymptotically. We develop a method to summarize these generalized residuals into a single
summary statistic for each item and evaluate its asymptotic distribution. Kondratek suggested a
similar Wald-type statistic, but without accounting for the uncertainty in the estimation of the
item parameters. Our method combines the work of Haberman and Kondratek, resulting in a
single fit statistic per item while accounting for estimation error. A series of simulations was
carried out to investigate the performance of our statistic and compare it to several popular item
fit statistics. Our method resulted in similar Type I errors as Kondratek’s statistic, with slightly
better results in the case of small samples. Furthermore, the recovery was consistent across
different levels of item difficulty, and power of the new item fit statistic was relatively low, except

for problematic individual items, but this result was found with two competing statistics as well.
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X. Liao et al. Evaluation of Item Fit Based on IRT

Introduction
In item response theory (IRT) modeling, item fit analysis is an important aspect in evaluating the
accuracy of the item response function (IRF). Incorrect IRF specification can lead to incorrect
scoring and fairness issues. An often-used method to evaluate item fit is to compare observed and
expected IRF's. Several statistics have been developed to summarize the differences between IRFs,
but null distributions are not available for some common cases, such as the INFIT (Wright &
Panchapakesan, 1969) and root-mean-squared deviation (Oliveri & von Davier, 2011). Although
methods like the bootstrap (Silva Diaz et al., 2022) and jackknife (Robitzsch, 2022) can overcome
issues with asymptotics at the cost of computational time, it would be better to work with item
fit statistics that have known asymptotic properties under a wide range of conditions.

In general, two main approaches can be distinguished in developing a chi-square statistic
based on residuals between the observed and expected IRFs. Though both use a general framework
whereby residuals are first computed by grouping individuals according to specific ranges of ability
(“bins”) and then summarized into a single x? statistic, the definition of bins varies. In the first
approach, IRFs are evaluated based on the estimate of the latent variable (é) that explains the
dependencies between items. Such indices include Bock’s (1972) x? statistic and Yen’s (1981)
()1 statistic. Their use of ability estimates in creating bins renders uncertainty in the true null
distribution of the statistics, an ensuing problem with model-dependent statistics. A related
consequence appears in their inflated Type I error and low power, particularly with short tests
(Chon et al., 2010). The second approach, for example that used to derive Orlando and Thissen’s
(2000) S-X2, avoids the use of 6 by grouping examinees based on their total score (i.e., the sum of
scored responses to all items). While its Type I error rate is typically close to the nominal level, a
concern with using S-X? is its low power (Stone & Zhang, 2003).

Haberman et al. (2013) developed a method for evaluating the fit of IRFs based on
generalized residuals. This method produces asymptotically standard normal residuals as a
function of the latent ability variable in the IRT model. The main goal of our research is to
correctly combine these generalized residuals across the ability scale into a single summary
statistic and establish its asymptotic distribution. Instead of using ability points to evaluate the
IRFs, we make use of ability intervals, as Stone (2000) suggested. This results in a Wald-type
test, which is assumed to have a chi-squared distribution. Recently, Kondratek (2022) conducted

an extensive simulation study to evaluate a clever version of this statistic. However, his version
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does not account for the fact that item parameters are estimated. We extend his statistic by
accounting for the uncertainty in the estimation of item parameters.

A series of simulations is carried out to investigate the performance of this statistic under
a variety of circumstances for the unidimensional two-parameter logistic (2PL) model (Birnbaum,
1968) and make comparisons to other commonly used item fit statistics. A benefit of using the
theory behind generalized residuals is that, in principle, it can be easily extended, not only to
other IRT models, including multigroup and multidimensional models, but also to models with

response times (Sinharay & van Rijn, 2020).

Method

Item Response Theory Models

For a unidimensional 2PL model, the IRF for item j is given by

exp(a;jf + b))
X; =10) =p,(0) =
p( J | ) p]( ) 1+exp(a]9+bj)a

(1)

where 6 is the ability parameter, a; is an item slope parameter, and b; is an item intercept
parameter. We also consider more complex models as the data-generating model, such as the 3PL
and 4PL. The IRF of the unidimensional 4PL (Barton & Lord, 1981) is given by

exp(a;t + bj)
1+ eXp(ajO + bj) ’

p(X; =110) = p;(0) = ¢; + (dj — ¢;) (2)

where ¢; and d; are lower and upper asymptotes, respectively, to accommodate guessing and
slipping behaviors on the test.
If a normal density f() is assumed for the latent variable, the posterior of 6 is
p(x|0)(9)
S p(x10)£(0)do’

where p(x|0) is the likelihood of item response vector x, typically under the assumption of local

9(0]x) = 3)

independence. In marginal maximum likelihood estimation of item parameters, the mean and
standard deviation of f(#) are typically fixed to 0 and 1, respectively, for the purpose of model

identification, although identification issues may persist for the 3PL and 4PL models.
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Derivations of New Item-Fit Statistic With Known Item Parameters
Let’s first consider the case in which all parameters of a 2PL IRT model are known. Then, the
expected IRF is given by Equation 1.

An alternative estimate of the IRF, or (pseudo-)observed IRF, is

5 () = 2z Tig (Olx) 4
pi(0) = == , (4)
> i1 9(0]x;)
where x; = (zj1, %42, ...) is the item response vector of test taker i, i = 1,..., N. The residual of

the expected and observed IRFs, referred to as the residual IRF, is
ri(0) = p;(0) — p;(6). (5)

The estimated asymptotic variance of the residual IRF is

ELi{g(blx) foy = 7O
2, 9(01x,)

When the IRT model fits the data, the generalized residual IRF defined as z;(0) = [r;(6)]/{s[p;(6)]}

s* [p;(0)] =

(6)

converges in distribution to a standard normal variable (Haberman et al., 2013).

It would be tempting simply to take the sum of squared generalized residuals z;(6) over
a selected number of @ points (e.g., the quadrature points) as a summary statistic, but such a
sum does not have a known asymptotic null distribution. Kondratek (2022) used intervals based
on 6 (“bins”) instead of € points to construct observed and expected proportions correct at given
intervals. Let Aji,...,Ajx denote K nonintersecting intervals that cover the real line for item j.
The intervals can be, for example, based on quantiles of the density f(f), so that they are fixed
across items, or adjusted by item difficulty to maintain roughly equal expected proportions for
each interval. In the latter case, the intervals would be item specific. Such adaptive intervals
can be constructed as in Kondratek (2022), where n;;,Ej;(1 — Eji) is kept constant over k, with
nji, denoting the expected number of observations in the kth bin under f(#) for item j and Ejj,

denoting the expected proportion of correct responses in the kth interval given by, respectively,

m =N [ sy (")

I, i) (0)d8
Ty, f(6)d6

(8)
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We can then denote the conditional probability that 6 falls into Aj;, given response vector x; as

o= [ glblxa. )
Ajk
The observed proportion of correct responses in interval Ajj is then given by
N
N i
O = W (10)
2i=1 Tijk

An alternative expected proportion of correct responses for item j can be based on the
item response vector without item j, denoted by x; ; (see, e.g., Kondratek, 2022, Equation 12). It
can be argued that doing so purifies the calculation of the expected proportion of the scrutinized

item, which results in

cior= [ pi®)(Obea)ab (1)

N
o i1 CigkTijh
k= TN
> iz Tijh

In calculating 7;;x, one would have to then also use g(f]x; ;) instead of g(f|x;). However,

(12)

Kondratek does not mention this point, and because excluding the item complicates the
computation, we retain it for simplicity.

Asymptotic normality of the Oj; holds if the observed and expected frequencies (i.e., the
numerators in Equations 10 and 12) are not too small. One typical rule of thumb is that both
njrEj, and nji(1 — Ej) should be larger than 20 (Kondratek, 2022). The covariance matrix V;

of O, has elements

SN @i — Og)(ai; — Oj)

Vjkl = N N . (13)
Dim1 Tik 21 Til
Kondratek then defined a Wald-like item fit statistic as
Xiy, = (0; —E;)' Vi1 (0, - E)), (14)
which has an asymptotic chi-squared distribution with K degrees of freedom.
Derivations of New Item-Fit Statistic With Estimated Item Parameters
Under a 2PL model, the expected IRF with estimated item parameters is
. exp(a;0 + b;
p;(0) = (a0 +by) (15)

1+ exp(a;0 + bj)
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Again, the alternative estimate of the IRF is

N N
5(0) — Zi:l wijg(ﬁ\xi) 16
pi(0) = ==F— 7 (16)
> e 9(01%;)
where §(0|x;) is the estimated conditional density of § given item response vector x; using
estimated item parameters. The residual IRF is
75(0) = p;(0) — p;(0)- (17)

Haberman et al. (2013) noted that the estimate in Equation 16 is a ratio so that standard
formulas can be applied to obtain the variance of the residual. This variance is found in Equation

46 of their paper:

N 16001x:) [wi5 — p:(0)] — [€:(0)] Ve (& ’
2o = 2 (9(013) [z — 55(0)] COACUIN -
2N, (0x)

where
N
&;(0) = NT'T1> " §(00x;) [wi; — p;(0)] VLi(€) (19)
=1

and
_ N . L !
I=NTYvaE [vad)]
i=1
When the IRT model fits the data, the generalized residual IRF 2;(0) = [7;(0)]/{s[7;(6)]}
converges in distribution to a standard normal variable (Haberman et al., 2013).
We aim to find the K x K covariance matrix of the difference between the observed and
expected proportion of correct responses in the intervals for estimated item parameters denoted

by Vj . We denote the conditional probability that ¢ falls into Aj;, given response vector x; using

estimated item parameters as

- / (0] do. (21)

Ay,

The observed proportion of correct responses in interval Aj; is then given by

N .. A..
Oy, = 2zi=1 Tk, (22)
> i1 Tijk

The expected proportion of correct responses in interval Aj is
Bu= [ 5i0)50)d. (23)
Ajk
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where f(#) is the standard normal density (i.e., the mean and standard deviation are fixed for
model identification). Again, asymptotic normality of the Ojk holds if the observed and expected
frequencies are not too small. The estimated asymptotic covariance matrix Vj of Oj — Ej has

elements (k,1):

SN B [ — Ogp = € VE(E)] [0y = O — & Vi(©)]

f&jkl = N - N - ) (24)
D i=1 Tigh 2li=1 Tijl
where
— N ~ A
é;k =N"1J! Z [xij — O]k] Vi (€) (25)
i=1
and é;-l is defined analogously.
The item fit statistic for estimated item parameters is then defined by
N . N a1 a .
Xy, = (Oj - Ej) \’% (Oj - Ej) ; (26)

which has an asymptotic chi-squared distribution with K — p degrees of freedom, where p is the

number of estimated item parameters (i.e., 2 in the case of the 2PL).

Simulation
We conducted two simulation studies to evaluate the Type I error and power of our statistic
X%V in comparison with X%V (note that we drop the item index j for convenience). Both
statistics are computed by plugging in the item parameter estimates as if they were the true
parameters, but X%V does not correct for the uncertainty in parameter estimates and is close to
Kondratek’s (2022) statistic. In addition, two other well-known item-fit statistics were used in
the comparison—Orlando and Thissen’s (2000) S-X2 and Yen’s (1981) Q1—and we used the R

package MIRT (Chalmers, 2012) to calculate them.

Simulation 1: Type I Error

In the first simulation study, we manipulated three factors: (a) number of  intervals (three and
five adaptive bins), (b) test length (20 and 40 items), and (c) sample size (200, 500, and 1,000).
The smaller sample of 200 was intended to explore how the fit statistics were affected by an
increased amount of uncertainty in item parameter estimates. The three factors were crossed with

each other.
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Table 1. Type I Error (%) of X3,, X2,, S-X2, and Q1, 200 Replications

K Test length (items) Sample size X3, X3, S-X? Q1
3 20 200 5.60 5.50 4.56 6.80
500 5.90 5.90 4.90 18.50
1,000 5.40 5.35 5.00 52.17
40 200 6.10 5.97 4.27 4.43
500 4.98 4.92 4.85 5.91
1,000 5.40 5.40 4.90 8.49
) 20 200 7.70 7.45 4.56 6.80
500 6.45 6.45 4.90 18.50
1,000 5.00 5.00 5.00 52.17
40 200 7.95 7.75 4.27 4.43
500 5.82 5.78 4.85 5.91
1,000 5.78 5.73 4.90 8.49

We generated item response data using the unidimensional 2PL model. The item
parameters were generated from the distributions loga; ~ N(0,0.25) and b; ~ N(0,0.8) and the
respondent proficiencies were generated from a standard normal distribution. The response data
were then calibrated with the 2PL model, and all four item fit statistics were calculated. For each
of the 12 simulation conditions, 200 replications were performed. The empirical Type I error rate
for each individual statistic was computed by averaging the proportions significant across all items
and replications.

Table 1 shows the Type I error rates for the simulation conditions at the 5% level. In
contrast to the high Type I error rate for ()1 (unreasonably high, given shorter tests), our statistic
X%V is comparable to S-X? in regards to the Type I error being close to the nominal level. Also,
the Type I error rates of X%V are similar to those of Xx%[/: indicating that accounting for the

uncertainty in the estimated parameters did not inflate the error rate.

We further examined the relationship between item difficulty and the p-value of the X’%V
statistic for the simulated data to understand the impact of item difficulty and the use of adaptive
bins on Type I error.

Figure 1 shows how the p-value of X’%V is related to item difficulty using spline smoothing.
Under the 2PL model, the p-values should have a uniform distribution so that the smoothed

average is expected to be around .5. Although the adaptive bins aim to maintain constant
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20 Items

0.6

0.5 ; - K=3,N=200
@é — K=3,N=500

Soa4
g = K=3,N=1000

T 0.3
Q K=5,N=200

0.2
= K=5,N=500

0.1
__________________________________________ = K=5,N=1000

-2 -1 0 1 2
Item Difficulty
40 Items

0.5
%&Q K=3,N=200
@ 0.4 — K=3,N=500
Ig 0.3 = K=3,N=1000
Q02 K=5,N=200
01 = K=5,N=500
“““““““““““““““““““““““ = K=5,N=1000

0.0

-2 -1 0 1 2 3
Item Difficulty

Figure 1. Relationship between item difficulty and p-value of X%V Solid lines represent the
smoothed functions of p-value in relation to item difficulty across items in all 200 replications
under different conditions, whereas the dashed line is an extreme p-value level .05.

proportions within each interval, Type I errors were largely inflated for N = 200, presumably

because of a small number of respondents in some intervals for very difficult items.

Simulation 2: Power
The second simulation study compared the power of the fit statistics. Because the Type I error
rate of Yen’s (1981) @ is excessively high (see Table 1), we excluded it from the power analysis.
We considered similar factors as in the previous analysis and additionally manipulated
the generating model (GM) to detect misfit. Specifically, we used the following three scenarios
to introduce misfit. In the first scenario, the calibrating model (CM) has fewer parameters than
the GM, where we consider more complex 3PL and 4PL models as the GM. The IRF of the
unidimensional 4PL model (Barton & Lorde, 1981) is given by

exp(a;f + BJ)
1+ exp(a;f +b;)’

p;j(0) = cj + (dj — ¢;) (27)
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1.0
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Figure 2. Item response functions for three types of misfitting items.

where ¢; and d; are lower and upper asymptotes, respectively, to accommodate guessing and
slipping behaviors on the test. If d; = 1, the preceding IRF reduces to that for the 3PL model.
In this scenario, the GM can be either the 3PL model with loga; ~ N(0,0.25), b; ~ N(0,0.8) and
c; ~ Beta(8,32) or the 4PL model with loga; ~ N(0,0.25), b; ~ N(0,0.8), c; ~ Beta(8,32), and
d; ~ Beta(32,8). The second scenario has a proportion of only 10% of misfitting items, with the
data for misfitting items being generated from either the 3PL or 4PL model. In the third scenario,
we add three types of bad items one at a time, which is similar to the approach used by Sinharay

(2006) and van Rijn et al. (2016). These bad items are as follows:

e BADI1: Nonmonotone IRF in the lower region of 6

1
PY =1/9) = Z1ogit*1(—4.25(0 +0.5)) + logit ™1 (4.25(6 — 1))

e BAD2: Flat IRF in the middle region of #

P(Y = 1]0) = 0.55logit™1(5.95(0 + 1)) + 0.45logit ™1 (5.95(8 — 2))

e BAD3: Wiggly, nonmonotone IRF

P(Y = 1|6) = 0.65logit ' (1.50) 4 0.35logit ™! (sin(36))

Figure 2 presents the corresponding IRF's for the three types of misfitting items. Regardless of the
various GMs, we fit the 2PL model to the data.
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Table 2. Power Rates (%) of X%V, X2, and S-X2, 200 Replications
K Test length (items) Sample size X3, X2, S-X?
Simulated JPL, estimated 2PL
3 20 200 6.45 6.20 4.20
500 6.50 6.40 6.00
1,000 7.30 7.30 5.70
40 200 6.48 6.45 5.22
500 6.75 6.73 4.72
1,000 9.32 9.30 5.73
5 20 200 7.10 6.95 4.20
500 6.75 6.70 6.00
1,000 6.30 6.20 5.70
40 200 7.05 6.82 5.22
500 6.48 6.40 4.72
1,000 8.25 8.25 5.73
Simulated 3PL, estimated 2PL
3 20 200 11.45 11.30 4.70
500 17.20 17.15 6.00
1,000 29.20 29.15 6.85
40 200 10.40 10.22 5.12
500 15.72 15.65 5.40
1,000 25.65 25.65 7.18
9 20 200 11.50 11.15 4.70
500 15.90 15.75 6.00
1,000 26.45 26.25 6.85
40 200 11.33 11.15 5.12
500 14.70 14.47 5.40
1,000 24.52 24.47 7.18

Note. 2PL = two-parameter logistic. 3PL = three-parameter logistic. 4PL = four-parameter

logistic.

Table 2 shows the power rates of the three item fit statistics if the GM is either the 4PL

model or the 3PL model and the CM is the 2PL model. In general, the power is low for detecting

this type of misfit. The X%V statistic provides slightly larger power rates for small samples than

does X%V, and both produce larger rates than does S-X?2.

Table 3 shows the power and false alarm rates of the three item fit statistics if, for 10%

of the items, the GM is either the 4PL model or the 3PL model and the CM is the 2PL model.

The power is in general smaller when the GM is the 4PL model than when it is the 3PL model. It

may seem paradoxical that the 2PL model fits data generated under the 4PL better than it does

under the 3PL. However, the IRF is more symmetric for the 4PL model that we considered (i.e.,

ETS Research Report No. RR-25-13 (©) 2025 Educational Testing Service
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Table 3. Power and False Alarm Rates (%) of X%V, X2, and S-X? for 10% Misfitting Items, 200

Replications
Power False Alarm Rate
K Test length (items) Sample size X2, X2, S-X? X2, X2, S-X?
Simulated 10% 4PL, estimated 2PL

3 20 200 6.00 6.00 7.50 5.89 5.72 4.65
500 9.00 9.00 7.00 5.72 5.67 5.44

1,000 8.50 8.50 10.00 5.06 5.00 5.61

40 200 7.00 7.00 4.00 6.17 6.03 4.22

500 8.00 7.75 6.75 5.28 5.19 4.83

1,000 12.00 11.75 8.25 5.50 5.50 5.56

5 20 200 6.50 6.50 7.50 6.89 6.78 4.65
500 8.00 8.00 7.00 5.39 5.28 5.44

1,000 8.50 8.50 10.00 5.56 5.56 5.61

40 200 8.75 8.75 4.00 8.08 7.86 4.22

500 11.75 11.75 6.75 5.33 5.28 4.83

1,000 10.75 10.75 8.25 5.89 5.86 5.56

Simulated 10% 3PL, estimated 2PL

3 20 200 9.00 8.50 8.50 6.22 6.22 4.88
500 14.50 14.50 9.50 6.00 5.83 5.67

1,000 20.00 20.00 12.00 5.61 5.61 5.39

40 200 8.00 8.00 6.50 5.89 5.72 4.30

500 12.00 12.00 9.25 5.61 5.53 5.31

1,000 22.50 22.50 8.25 5.78 5.72 5.31

5 20 200 10.00 9.50 8.50 717 6.94 4.88
500 14.00 14.00 9.50 5.44 5.39 5.67

1,000 16.00 16.00 12.00 5.61 5.61 5.39

40 200 10.50 10.00 6.50 8.00 7.81 4.30

500 15.50 15.00 9.25 5.78 5.67 5.31

1,000 22.75 22.75 8.25 6.14 6.11 5.31

Note. 2PL = two-parameter logistic. 3PL. = three-parameter logistic. 4PL = four-parameter

logistic.

the average ¢ parameter is roughly 0.20 and the average d parameter is roughly 0.80) than for the

3PL model (where the average ¢ parameter is roughly 0.20 and the upper asymptote is fixed at

1). As a result, the symmetric 2PL model can adapt more easily to scores simulated from the 4PL

model. In general though, the power is low in all the conditions considered in Table 3. Type I

error rates rates are not that different from those found in the first simulation study (see Table 1).

In Table 4, the power and false alarm rates of the three statistics for the three types

of misfitting items are shown. The power and false alarm rates of all three statistics are quite

satisfactory for the first bad-item type, except perhaps the false alarm rates with five bins and 200

ETS Research Report No. RR-25-13 (©) 2025 Educational Testing Service
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Table 4. Power and False Alarm Rates (%) of ng, X2,, and S-X? for Three Types of Misfitting
Items, 200 Replications

Power False alarm rate
K Test length (items)  Sample size X2, X2, S-x? Xz X3 o S-X?
BAD1: Nonmonotone IRF in the lower region of 0
3 20 200 96.00 96.00 79.00 553  5.26 4.24
500 100.00  100.00  100.00  5.74  5.68 5.32
1,000 100.00  100.00  100.00  5.68  5.58 5.95
40 200 99.00 99.00 87.00 5.92  5.79 4.50
500 100.00  100.00  100.00  5.13  5.08 4.55
1,000 100.00  100.00  100.00  5.59  5.51 5.33
5 20 200 96.00 96.00 79.00 758 7.21 4.24
500 100.00  100.00  100.00 6.16  6.11 5.32
1,000 100.00  100.00  100.00  5.53  5.47 5.95
40 200 100.00  100.00 87.00 77 7.56 4.50
500 100.00  100.00  100.00 5.79  5.74 4.55
1,000 100.00  100.00  100.00  5.67  5.59 5.33
BAD2: Flat IRF in the middle region of 0

3 20 200 33.00 33.00 16.00 521  5.11 5.17
500 70.00 70.00 28.00 532  5.26 4.47
1,000 96.00 96.00 63.00 547  5.47 5.63
40 200 48.00 48.00 17.00 6.08  5.79 4.42
500 83.00 83.00 44.00 5.03 4.95 5.11
1,000 99.00 99.00 86.00 554  5.51 4.46
5 20 200 36.00 34.00 16.00 726  7.16 5.17
500 76.00 76.00 28.00 516  5.11 4.47
1,000 97.00 97.00 63.00 5.58  5.58 5.63
40 200 57.00 56.00 17.00 733  7.10 4.42
500 91.00 91.00 44.00 5.69  5.54 5.11
1,000 99.00 99.00 86.00 556  5.54 4.46

BADS3: Wiggly, nonmonotone IRF
3 20 200 6.00 6.00 8.00 5.53  5.47 4.82
500 7.00 7.00 16.00 526  5.21 4.11
1,000 8.00 8.00 26.00 5.00  4.95 4.58
40 200 4.00 4.00 7.00 6.21  6.05 3.75
500 8.00 8.00 16.00 492 485 4.66
1,000 9.00 9.00 33.00 5.67  5.67 4.62
5 20 200 9.00 9.00 8.00 742  7.32 4.82
500 22.00 22.00 16.00 516  5.16 4.11
1,000 40.00 40.00 26.00 521  5.21 4.58
40 200 7.00 7.00 7.00 774 7.59 3.75
500 34.00 34.00 16.00 5.46  5.36 4.66
1,000 69.00 69.00 33.00 528  5.26 4.62

Note. IRF = item response function.

ETS Research Report No. RR-25-13 (©) 2025 Educational Testing Service 13



X. Liao et al. Evaluation of Item Fit Based on IRT

respondents. For the second bad-item type, the power is lower for smaller samples and for S-X?2.
The power for X‘%V is slighter larger than that for X3, for five bins and 200 respondents. For the
third bad-item type, the power is generally not great, except for XI%V and X%V with five bins, 40

items, and 1,000 respondents.

Discussion
Our method combines ideas from the work of Haberman et al. (2013) and Kondratek (2022),
resulting in a single fit statistic per item while accounting for estimation error of item parameters.
The Type I error rates of our suggested statistic were similar to those of Kondratek’s statistic,
even with small samples, in which case, item parameter uncertainty is substantial. In addition,
the power of our item fit statistic was slightly larger compared to Kondratek’s statistic and
considerably larger compared to Orlando and Thissen’s (2000) S-X? statistic. However, the power
to detect misfit was generally low when data were simulated from the 3PL and 4PL models and
analyzed using the 2PL model. Also, wiggly IRFs were hard to detect using all item-fit statistics
considered in this paper.

Although the results are generally promising, our simulations were limited in terms of the
chosen IRT models and the comparisons that were made. So further work is needed in this area.
In general, most item fit statistics can have problems in specific situations (e.g., when there are
floor or ceiling effects and the IRF is relatively flat), and our method is no exception. Nevertheless,
our work contributes to the search for item fit statistics with good asymptotic properties that do
not require additional computational burden to find the null distribution. In the future, we plan
to extend the method to other IRT models, such as multidimensional IRT models and multigroup

IRT models.
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