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Abstract

When constructed response items are used on more than one occasion, a natural concern is
whether the scoring is consistent (e.g., not more lenient or strict) across the occasions. It is
common to conduct trend scoring, in which a set of Occasion A responses are rescored at
Occasion B. The responses are usually selected according to some rescore design, such as being
balanced (with an equal number from each score category), proportional to the distribution of
Occasion A scores, or a mixed version of these two designs. Recent work has demonstrated that
treating the two-way table as if it arose from multinomial sampling is incorrect and can yield
seriously biased estimates of whether the scores are lower or higher at Occasion B. The present
study builds on these results by incorporating ordinal measures of change. It contrasts the usual
trend analysis with an alternative analysis that explicitly conditions on the rescore design and
finds only the latter to be effective. Omnibus measures based on combining the individual #-tests
or d-statistics are examined. Measures were somewhat conservative in Type I error control and
had good power to detect drift. Omnibus measures based on #-tests had marginally higher power,
having higher correct detection rates than those based on the d-statistic in 1%—-8% of the cases.
The difference between the best versions (Eweighted, Which is based on #-tests, vs. Dyeighted, Which
is based on d-statistics) was only 1.8%.

Keywords: constructed response items, score, rescore, bias, Type 1 error, drift, omnibus
measures, d-statistic, z-test

Corresponding author: John R. Donoghue, E-mail: jdonoghue@ets.org

Introduction
Use of constructed response (CR) items is widespread. One advantage of CR items is that
they require the production of a response, which often taps into different aspects of the domain of

interest compared to selected responses (Livingston, 2009). A downside to the use of CR items is
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that the responses must be scored. When the same CR items are administered on two occasions,
Occasion A and Occasion B, it is important to evaluate whether the scoring is comparable for the
administrations. Occasions A and B might be two human scores of responses from two
administrations of an assessment. However, the same issues arise when comparing, for example,
human scores to those provided by an automated scoring engine or comparing scores of an
existing engine to another engine (even if the second engine is a revised/improved version of the
first). For simplicity, in this report, the original scoring will be referred to as Occasion A, and the
rescoring will be Occasion B.

CR scoring is expensive, and changes in scoring across occasions (i.e., rater drift) can
result in biased estimates of the change from Occasion A to Occasion B. In some cases, it may be
necessary to treat an item as if it were different items at the two occasions. In the most extreme
cases, it may be necessary not to use (to “drop”) the item for Occasion B.

In trend scoring, a selection of the Occasion A responses are rescored at Occasion B, and
the scores are compared. The two sets of scores are usually cross-tabulated to form a two-way
table. In evaluating trend scoring, it is common to treat the table generated as a two-way
contingency table, arising from multinomial sampling. If the margins were of interest (i.e.,
whether Occasion B scores are higher than Occasion A’s), one would then compute either a
paired t-test or an alternative, such as Stuart’s (1955) Q. If agreement were the chief feature of
interest, one would use a measure such as Cohen’s (1960) kappa or weighted kappa (Cohen,
1968).

Significance tests of these statistics assume that the table is a sample from some
population of responses and that the table follows a multinomial distribution. This is appropriate
if the set of scores is sampled and the margins are the observed totals of the observed scores.
However, this is usually not true of trend scoring. In most cases, the responses from Occasion A
are selected according to some plan, such as (a) ensuring an equal number from each of the
response categories; (b) selecting responses proportionately to the Occasion A distribution; or (c)
employing a mixture of the two, such as 50% equal distribution and 50% proportional. We refer
to this planned distribution of Occasion A responses as the rescore design.

When responses are selected according to a rescore design, the Occasion A margins of the
rescore table are fixed by the rescore design. In this case, the sampling is no longer multinomial.

Instead, each level of Occasion A scores follows a separate multinomial distribution. Because the
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table margins are fixed by the rescore design, the proper sampling model is a product-
multinomial (Feinberg, 1980, p. 30). Donoghue et al. (2022) and McClellan et al. (2023) showed
that treating the table as if it were multinomial can lead to biased #-statistics and kappa
coefficients, where the bias can be either positive or negative.

Table 1 provides examples in which the conclusion would be no drift, scorers are more
lenient, or scorers are more stringent strictly as a function of the rescore design. Correct analysis
of the rescore data requires acknowledging the fact that the Occasion A margins are fixed.
Donoghue and Eckerly (2024) suggested computing #-statistics separately within each Occasion
A score point and then aggregating the results. They also suggested three omnibus E-statistics
(made by combining the individual #-tests). These measures had good Type I error rates and

power and were not subject to the bias seen in the paired z-test.

Table 1. Example Rescore Tables With Identical Conditional Row Probabilities but
Differing in Trend Design, Illustrating Difference in z-Test and d-Statistic

Occasion A score

Occasion B score 1 2 Total
Mean diff=0,t=0, dw =0, Zwr=0
1 25 25 50
2 25 25 50
Totals 50 50
Mean diff =0.4, t = 6.83, dw» = 0.4, zw» = 6.83
1 5 5 10
2 45 45 90
Totals 50 50
Mean diff = -0,3, t = -4.66, dws = -0.6, zw» = -4.61
1 40 40 80
2 10 10 20
Totals 50 50

One weakness of that work is that the z-statistic treats the values as interval scores,
whereas the reality is that CR scores are only ordinal indicators of the underlying response
quality. More recently, Sgammato and Donoghue (2018) recommended using Stuart’s (1955) Q-
statistic for marginal homogeneity, which treats the margins as nominal. Bowker (1948), Clayton
(1974), and Agresti (1983) demonstrated tests of marginal homogeneity for ordinal measures and
others formed of regression analyses (e.g., McCullagh, 1977, 1980; Long, 1997). Other
measures, such as the Mann—Whitney U or Cliff’s (1993) d, correctly reflect the ordinal level of

measurement. Under certain circumstances, these ordinal tests can be more powerful than the #-
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test (Feng & Cliff, 2004), and Cliff (1993, 1996a, 1996b) has noted that many times, the ordinal
statistics align directly with the research question “Are Occasion B scores higher than Occasion
A scores?” Unfortunately, these measures fail to reflect the product-multinomial sampling in
rescore tables.

The purpose of the current study was to bring together these lines of work using a
measure that reflects the ordinal nature of the data while simultaneously acknowledging the
product-multinomial sampling scheme. Its unique contribution is the use of ordinal measures
(Cliff’s d) in evaluating a rescoring study. The ordinal d-statistic was chosen because it has been
shown to have good power, at times exceeding that of the #-test when applied to the same data
(Feng & Cliff, 2004). In addition, the measure has an intuitive interpretation as an effect size:
What proportion of the scores for Group 1 are higher than Group 2 scores, versus the opposite?

The rest of the report is organized as follows. First, Cliff’s d is introduced in the general
case of comparing two independent groups, then extended to the within-subjects case. Next, the
report examines a trend analysis of rescore data and points out the observation from Donoghue et
al. (2022) that the usual multinomial sampling assumption does not hold in the presence of a
rescore design. Conditional analysis is introduced, and six statistics based on conditional analysis
are given. That is followed by a large simulation study. Results are presented for trend analysis,
followed by results for conditional analysis, including comparisons of the six conditional

analysis measures. Finally, the report finishes with discussion and concluding remarks.

Cliff’s d
This section introduces the d-statistic in general. Its use in trend analysis is discussed in
the next section. In the general case of comparing two independent groups, the ordinal' d-
statistic is defined:

CHXSY)-HY > X)
B mn ’

d

M

where function #( ) indicates the count of cases in which the argument is true, # is the number of
X-scores, and m is the number of Y-scores. Cliff (1993) proposed using “dominance relations” to
address the question “Are the scores in Group X higher than those in Group Y?” A dominance

relation dj; is defined as

dij =sign(x, — yj) ) (2)
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which can be arranged into a matrix as shown in Table 2. Note that the entries indicate whether

the row value is larger than the column entry. It is also useful to define the marginal proportion:

d, =Z— 3)

m

with an analogous definition of the row proportiond. ; .

Table 2. Matrix of Dominance Relations

Y-score
X-score 1 3 4 7 8 d
6 1 1 1 -1 -1 0.2
7 1 1 1 0 -1 0.4
9 1 1 1 1 1 1
10 1 1 1 1 1 1
d 1 1 1 0.25 0 0.65

Note. Adapted from “Dominance Statistics: Ordinal Analyses to Answer Ordinal Questions,” by N. Cliff, 1993,
Quantitative Methods in Psychology, 114(3), p. 500, Table 1. Copyright 1993 by the American Psychological
Association Inc.

The d-statistic can be readily defined in terms of dj;:

d= Z;Zil dij
mn '

“
The standard error of d is given as
§2 _ mZZi:l (di° - d)z T nsz:l (d'j - d)z - Zi:l Zj:l (dl.'i - d)2 (5)
d .

mn(m—1)(n—1)

Cliff (1993) also presented a paired version of the d-statistic, along with associated
standard error to facilitate significance testing and the construction of confidence intervals. In
this case, rows represent scores in condition X, and columns represent the scores in condition Y.
Cliff pointed out that three interrelated questions were of interest:

1. Within-subject, measured by d,. Are the responses of a subject higher in the Y-

condition than they are in the X-condition? This is the diagonal of the dominance

matrix:

g2 o _2di—d)

Y n n—1

(6)
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2. Between subject, measured by dp. Do different members of the group score higher
in the Y-condition than they do in the X-condition? This compares the off-diagonal

elements of the dominance matrix:

., 224y, sHcovdy.d,)+(n=2)[s] +s] +2c0v(d,..d,) ]
T an-1) n(n—2) ‘

(7

3. Combined, measured by dj,. Overall, are scores in the Y-condition higher than those

in the X-condition? This combines information from the whole matrix, that is, from

dy and dp:
d,, =d,+d,, sjbw = sjh +st +2cov(d,,,d,),
where
Zi—][(z‘mdij + J#i dji)dii:|_2n(n_1)dbdw
cov(d,.d,)= .
n(n—1)(n-2)

Note that dp, can be larger than 1 and so is no longer interpretable as a probability.

Approaches to Analyzing Trend Scoring Data

We differentiate two forms of analysis of the cross-occasion data. Trend analysis refers to

analyzing the rescore table as if it were a two-way table derived from multinomial sampling.

Conditional analysis refers to explicitly accounting for the product-multinomial sampling of the

rescore table.

In trend analysis, the scores are paired. A common test to determine if scores at Occasion

B are lower or higher than they are at Occasion A is a paired #-test. For the d-statistic, trend
analysis uses the paired d-statistics (dw, d», and dws) computed from the rescore table. The
dominance matrix is constructed, and the statistics are computed according to the preceding

equations. As noted, the three d-statistics ask slightly different questions. For simplicity, this

report focuses on dys. Results for d,, and dj show the same patterns and so are not presented in

the interest of space.

Conditional Analysis
Because the Occasion A margins of the rescore table are fixed by the rescore design,

comparisons like the trend analysis based on the margins are at best misleading. Statistics that
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are invariant to the margins are the conditional probabilities P(Y]X), the probability of score ¥ on
Occasion B given that a score of X was observed at Occasion A. However, to evaluate the
conditional probabilities, a comparison is needed. Here it is assumed that there was within-
occasion monitoring at Occasion A, which involved having a second score assigned at Occasion
A, and so a within-occasion rescore table is available. The conditional probabilities from the
within-occasion table are then compared to those from the rescore table (for more detail, see
Donoghue & Eckerly, 2024). The key idea is to consider only papers that received a specific
score k from the Occasion A first rater. From the within-occasion score table, extract that row of
counts. Extract the same row from the rescore table. Finally, compute an independent-groups test
(z-test or d-statistic) comparing these two sets of scores.

One challenge of this approach is that it yields one test statistic for each level of the
Occasion A score. Frequently, an omnibus statistic is required to answer the question “Overall,
are Occasion B scores higher or lower than Occasion A scores?” To address this, Donoghue and
Eckerly (2024) proposed three E-statistics, based on different ways of combining the individual
t-tests. Epooled SUmMs the numerators and denominators, then divides the two to come up with a test

statistic:
K —_ —
_ Zk:o('xk =)

ooled
p P
k=0" (X%=¥k)

Relying on the #-test’s approach to the normal distribution as the degrees of freedom increase,

(10)

tests for this statistic are conducted comparing it to a standard normal distribution.
The second statistic, Eweighted, Weights the individual statistics by their frequency in the
Occasion A scoring, forming a weighted sum of the numerators and a weighted sum of the

denominators:

ZK w (X, — J’k)

welghted (1 1)
\/Z =0 k (XA ~T)
Eeighted 1s compared to a standard normal distribution.
The third statistic, 2, is formed by squaring the individual #-tests:
E, =D (12)
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Under the assumption that the individual tests are approximately standard normal, E,» is
compared to a x* variate with degrees of freedom equal to the number of terms summed (the
number of categories of the Occasion A score).”

Cliff notes that d divided by its standard error is asymptotically distributed as a standard
normal variable. On this basis, omnibus measures of d were computed, hereinafter referred to as

D-statistics, that were exact analogs of the E-statistics:

K
N
Dpooled = k[;O 5 ’ (13)
Zk:osdk
K
Z - w,d,
Dweighted = kKO 5 H (14)
\ k=0 WiSq,
2
k| d,
sz :Zk:O s | (15)

Sk

The difference is that the terms in the summations are individual d-tests instead of #-tests.
Because the two sets of scores are separate responses in conditional analysis, only the between-
subjects independent d-test was used for the conditional analyses.

One detail in computing the omnibus E- and D-statistics is that, for extreme distributions
of Occasion A scores (typically a high IRT a-parameter coupled with an extreme b-parameter), it
is possible that one level might yield a set of scores for which the #-test and d-test could not be
computed. In these cases, the computation was modified to ignore the level in question. In this

case, the degrees of freedom for £, and D,» were modified accordingly.

Method

To explore the design space, an extensive simulation study was conducted to examine
Type I error rate and power. The factors are summarized in Table 3. To model use of the same
test taker responses, the same 0 (representing the quality of the CR) was used with the Occasion
A and Occasion B item response theory (IRT) parameters to generate responses. Data were
generated using Python 3.9. Most data manipulation and computation of the target statistics was
conducted in R (Version 4.2.2; R Core Team, 2022). The exception was that computation of the
dependent CIliff d- statistics was done using a Java 11 program for better performance. Finally,

statistical analysis of the outcome data used SAS and R.
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Table 3. Factors Varied in Simulation

Factor Number of Levels
levels
Number of cases 6 50, 100, 200, 400, 600, 1,000
Rescore design 3 Proportional, balanced, mixed (50%

proportional, 50% balanced)
bo=-1.0,-0.5,0, 0.5, 1.0
bshift = -1.0, -0.5, 0, 0.5, 1.0

Occasion A b-parameter
Change in b-parameter from Occasion A to Occasion B
Occasion A ag-parameter a0=0.7,1.0,1.3,1.5, 2.0
Occasion B a-parameter gat=0.7,1.0,1.3,1.5,2.0
No. score categories and IRT model 7 2 (2PL), 3,4, 5 (GPCM or GRM)
Note. 2PL = two-parameter logistic; GPCM = generalized partial credit model; GRM = graded response model; IRT =
item response theory.

(SN, RO R, |

Item Response Theory Models Used
For dichotomous items, the two-parameter logistic (2PL) model was used:

exp[l.7a(6—-b)]

P(0) = . 16
©) I+exp[l.7a(0-b)] (16)
For polytomous items, the graded response model (GRM),
F©)=F -F, (17
with
P = P(x>k|0)= exp[l.7a(0—-b+d,)] (18)

1+exp[l.7a(0—b+d,)]

was used for half of the items, and the generalized partial credit model (GPCM),

exp|1.7a>" (0-b+d)
Py (1703, | o

Zexp[l .7aZ:=O O-b+ dv)}

was used for the other half. For the polytomous items, b was determined by the value of bo for
items without scoring drift, and for items exhibiting drift, by bo + bshi. The category thresholds
dr were chosen: (—0.75, 0.75) for three-category items, (—0.75, 0.0, 0.75) for four-category items,
and (—0.75, —0.25, 0.25 0.75) for five-category items. There is no assertion that these parameters
are equivalent across the two polytomous IRT models; rather, the parameters were chosen to

yield data that look like scoring data.
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Data Generation Factors

As shown in Table 3, the design contained seven factors, each with several levels. The

factors were fully crossed:

Number of response categories and IRT model (seven levels). The number of response
categories was two, three, four, or five. The 2PL model was used for two-category data.
The remaining six levels come from cross-generating model GRM or GPCM with the
three levels of numbers of categories. Note that the same IRT model was used for all
scores of an item, although (as described later) the item parameters could be different if
the item exhibited drift. Holding 6 fixed for the two scoring occasions corresponds to the
fact that the underlying quality of the CRs has not changed. Changing the IRT parameters
for Occasion B represents a shift in the overall scoring process (e.g., due to training

differences) at Occasion B.
Number of cases (six values). The six values are 50, 100, 200, 400, 600, and 1,000.
Occasion A b-parameter, bo (five values). The fives values are —1, —0.5, 0, 0.5, and 1.

Change in b-parameter from Occasion A to Occasion B, bshitt (five values). The five

values are —1, —0.5, 0, 0.5, and 1.
Occasion A a-parameter, ao (five values). The five values are 0.7, 1.0, 1.3, 1.5, and 2.0.
Occasion B a-parameter, aai (five values). The five values are 0.7, 1.0, 1.3, 1.5, and 2.0.

Rescore design (three levels), balanced, proportional, or mixed. In the balanced
design, an equal number of papers was generated for each Occasion A response category.
In the proportional design, the number of Occasion A papers mirrored the expected
distribution of Occasion A responses. Using the IRT parameters and assuming an N(0, 1)
distribution of ability, the item response function was evaluated at 41 points [—4, 4]. This
was multiplied by the height of the normal density at that point and summed to compute
the expected proportion in that category. This was then multiplied by the number of cases
to come up with the number of responses for each category. Fractional responses were
arbitrarily assigned to the lowest response category. For the mixed design, one-half of the
papers were selected according to the balanced design, and one-half were selected

according to the proportional design.

ETS Research Report No. RR-25-15 © 2025 Educational Testing Service 10



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

The seven design factors were crossed to yield 7 x 6 x 5 x 5 x 5 x 5 x 3 (78,750) data
generation conditions; 1,000 replications were generated for each cell. In some replications, all
responses fell into one of the categories, making the paired ¢-test and Q impossible to compute.
Another situation was if agreement happened to be perfect (all off-diagonal cells = 0.0), the
denominator of the #-test was undefined. In a small number of additional conditions, the
covariance matrix used in computing Stuart’s Q (see the appendix for details) was singular,
preventing its inversion. This was associated with extreme combinations of by and bshirt and with
high a-parameter values. These replications were replaced until the full 1,000 were obtained for
each cell. The proportion of the 1,000 values for which the statistic was significant was recorded,

and these rates are the outcome measures for the study.

Analysis Factors

For trend analysis, the rescore data were treated as a two-way table. Paired #-test and
Cliff’s paired d were computed. For conditional analysis, independent-groups #-test and Cliff’s d
were computed separately for each level of Occasion A scores. One set of values comprised the
within—Occasion A second scores. The other set of values comprised the Occasion B scores.
Thus there are four analyses of each data set:* (a) trend, paired #-test; (b) trend, Cliff’s paired d;
(c) conditional, #-test, with three omnibus measures considered (Epooled, Eweighted, and E,2); and (d)

conditional, Cliff’s d, again with three omnibus versions considered (Dpooled, Dweighted, and D).

Data Generation

For each response, a 0-value (representing quality of the response) was drawn from an
N(0, 1) distribution. Next, using the IRT model, the probability of each response category
(conditional on 0) was computed, then summed to form a cumulative distribution. A uniform
random number was drawn, and the response category was assigned based on which of the
category probability values contained the uniform value. This was the Occasion A first score.
According to the rescore design, if the number of responses for that category had already been
reached, the 6 and response were discarded. Another 6 was drawn, and an associated response
was generated. This process continued until the number of responses required by the rescore
design was obtained. For within—Occasion A rescores, the same 0 was used with the same item
parameters. A second uniform random number was drawn and used to assign a within-occasion

TeSCore response.
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Generation of the cross-occasion rescore table proceeded similarly. To reflect the
independence of the rescore table from the within-occasion scoring, a new 6 value was drawn,
and an Occasion A response was generated, subject to the constraint on the limits imposed by the
rescore design. For the Occasion B response, the same 6 was used, but the item parameters for
the second score were chosen according to the condition. These new item parameters were used
to compute Occasion B probabilities, and a uniform number was then drawn to determine the
Occasion B score.

The final results of the data generation were two tables with the same row margins (first
score Occasion A, determined by the rescore design). The cell values and column (rescore) totals

were free to vary.

Results
The results are presented in two phases. The first phase reports the analyses of the trend

analysis. The second phase reports the results for the conditional analyses.

Trend Analyses
Type I Error
We first examine the Type I error behavior. The data were a subset of the 3,150
conditions in which the null hypothesis was true: bshit = 0 and ao = aair. A descriptive analysis of
variance (ANOVA) was computed to identify which factors were associated with large
proportions of variance in the Type I error rate. A practical effect size of
N = SSetee >0.01 (20)

total

was adopted. Selected results are given in Table 4. Note that bsnif is not in the ANOVA because it
is constant. Similarly, aar is not included because it must equal ao in the null condition.

The D [Rescore Design X B (bo) x N (number of cases)] was identified as salient, as were
each of the constituent main effects and two-way interactions. None of the other two-way or
three-way interactions were identified as salient. Figures 1 and 2 show the three-way interaction
for ¢-test and Cliff’s paired d, respectively. As the figures make clear, the Type I error rate is
grossly inflated for the balanced design, while it is well controlled for the proportional design. As

would be expected, the mixed design falls between these two extremes but generally displays
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inflated Type I error. Cliff’s d is not immune to these effects. The pattern largely parallels that of

the other statistic.

Table 4. Selected Analysis of Variance Results for Paired #Test and d»

t-test dwb
Variable df ANOVA SS n2 ANOVA SS n?

M 2 0.03 0.000 0.11 0.000
K 3 0.04 0.000 0.01 0.000
N 5 53.76 0.106 94.37 0.220
D 2 205.25 0.403 124.17 0.289
B 4 114.26 0.224 70.73 0.165
A 4 0.16 0.000 0.11 0.000
M x N 10 0.01 0.000 0.04 0.000
M xD 4 0.04 0.000 0.11 0.000
M x B 8 0.02 0.000 0.04 0.000
M x A 8 0.21 0.000 0.13 0.000
K x N 15 0.01 0.000 0.03 0.000
Kx D 6 0.05 0.000 0.04 0.000
KxB 12 0.05 0.000 0.03 0.000
Kx A 12 0.16 0.000 0.17 0.000
N x D 10 30.09 0.059 46.22 0.108
NxB 20 16.66 0.033 25.69 0.060
N x A 20 0.02 0.000 0.04 0.000
DxB 8 65.82 0.129 41.58 0.097
DxA 8 0.15 0.000 0.12 0.000
BxA 16 0.07 0.000 0.05 0.000
NxDxB 40 20.54 0.040 24.20 0.056
Total 3,149 509.20 429.74

Note. Effect sizes n? > .01 are in boldface. ANOVA SS = analysis of variance sum of squares; design; M = item

response theory model; K = number of response categories; N = number of cases; D = rescore; B = bo.

The findings in Figures 1 and 2 parallel the findings in Donoghue et al. (2022) and the
simulation results of Donoghue and Eckerly (2024). The result is clear: Ignoring the sampling

model and treating rescore data as if the data arise from a multinomial, two-way table can yield

very misleading results. The exception is when the rescore design specifies numbers of responses

that are proportional to the Occasion A marginal distribution. Note that Type I error is noticeably

lower for the condition bo = 0 than it is for the other values. In this condition, the proportions in

each category are equal. Thus the balanced design, proportional design, and mixed design

correspond in this condition.
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Figure 1. Type I Error Rate for #-Test as a Function of Design, bo, and NV
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Figure 2. Type I Error Rate for d,;-Statistic as a Function of Rescore Design, bo, and N
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Detection/Power

Because of the grossly inflated Type I error rates observed for the mixed and balanced
conditions, this analysis is restricted to the proportional condition where the Type I error rate was
well controlled. Therefore these results can accurately be termed “power.” Table 5 gives selected

ANOVA results for detection rates for each of the measures.
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Table 5. Selected Analysis of Variance Results for Detection (Power) Proportional Design

Only

t-test z-dwb
Variable df ANOVA SS n? ANOVA SS n2

M 2 5.33 0.002 3.94 0.001
K 3 6.39 0.002 4.42 0.001
N 5 99.47 0.033 98.30 0.032
B 4 0.17 0.000 0.06 0.000
Db 4 2,372.02 0.781 2,485.28 0.818
A 4 1.09 0.000 2.17 0.001
Aalt 4 8.33 0.003 7.43 0.002
M x N 10 27.74 0.009 22.72 0.007
M x B 8 0.74 0.000 0.67 0.000
M x Db 8 58.26 0.019 43.28 0.014
M x A 8 1.76 0.001 1.63 0.001
M x Aalt 8 6.69 0.002 6.15 0.002
K x N 15 14.19 0.005 12.33 0.004
KxB 12 0.14 0.000 0.14 0.000
K x Db 12 16.68 0.005 19.00 0.006
Kx A 12 0.68 0.000 0.88 0.000
K x Aalt 12 1.98 0.001 2.12 0.001
N x Db 20 62.61 0.021 67.30 0.022
N x A 20 9.68 0.003 10.84 0.004
N x Aalt 20 9.38 0.003 9.43 0.003
B x Db 16 32.41 0.011 23.25 0.008
BxA 16 0.29 0.000 0.20 0.000
B x Aalt 16 0.44 0.000 0.20 0.000
Db x A 16 11.30 0.004 10.42 0.003
Db x Aalt 16 20.78 0.007 16.28 0.005
A x Aalt 16 106.11 0.035 107.76 0.035
Total 25,199 3,038.85 3,057.28

Note. Effect sizes n% > .01 are in boldface. A = ao; Aalt=aar; ANOVA = analysis of variance; B = bo; D = rescore design;
Db = bshitt; K = number of response categories; M = item response theory model; N = number of cases.

Compared to Table 4, design is not present, as it is held constant for this analysis. On the
other hand, both bsnirt and aai are now included. Again, an effect size criterion of n?> > 0.01 is
adopted. As would be expected, N, bshif, and their interaction are identified as salient. Figures 3

and 4 show this interaction for each of the measures.
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Figure 3. Interaction of Sample Size NV and bshift for 7-Test
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Figure 4. Detection for d, by bshitt and Sample Size
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There is a U-shaped relationship between bshirt and detection that is minimal at bshir = 0
and increases as the value diverges from 0. The steepness of the curve is affected by N. When
bsnirt= 0, the only way that the null can be false is if the a-parameters differ. For small samples,
the power is quite poor, but for large samples, the power is nonnegligible. Referring to Table 5,
the interaction of ao * aait was identified as salient. Tables 6 and 7 show this interaction. When
the two a-parameters differ, there is moderate power. The elevation of the diagonal of equality is

an artifact of the design. When the two slopes are the same, the bshit must be nonzero. Because
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the measures are more sensitive to differences in item difficulty, power is relatively good in this

condition. Figures 5 and 6 portray this interaction.

Table 6. Mean Detection Rate z-Test as a Function of a0 and aai

Value ao
Oalt 0.7 1 1.3 1.5 2
0.7 0.90 0.75 0.76 0.76 0.77
1 0.76 0.95 0.78 0.79 0.80
1.3 0.79 0.78 0.97 0.79 0.80
1.5 0.80 0.79 0.79 0.98 0.80
2 0.81 0.81 0.80 0.80 0.99

Table 7. Mean Detection Rate of d,;-Statistic as a Function of a0 and a.i

Value do
Oalt 0.7 1 1.3 1.5 2
0.7 0.90 0.75 0.76 0.77 0.78
1 0.76 0.95 0.78 0.79 0.80
1.3 0.78 0.78 0.97 0.79 0.80
1.5 0.79 0.79 0.79 0.98 0.80
2 0.80 0.81 0.80 0.80 0.99

Figure 5. Interaction of Item Response Theory Model and bshist for Detection by z-Test
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Figure 6. Interaction of Item Response Theory Model and bshitt for Detection by d,.»
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One other interaction was flagged for the paired #-test: The bo x bgnife interaction was

identified as salient. Figure 7 shows this interaction.

Figure 7. Mean Detection Rate for z-Test for Interaction of bo and bshitt

1.00 -
L \
= 0.75- b0
o
-—
© -1
o
g — -0.5
;3 0.50- — 0
9
[} —
8 0.5
& 0.25- 1
[}
=

0.00 - . : . .

-1 0.5 0 0.5 1
b-shift

ETS Research Report No. RR-25-15 © 2025 Educational Testing Service 18



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

Conditional Analyses

Table 8 gives the average Type I error rate for each of the statistics by rescore design.
Compared to the trend analyses, the overall Type I error rates of all of the omnibus statistics are
somewhat conservative, and none shows a strong effect for rescore design. Despite their overall
conservative Type I error rates, the omnibus £, and D,, measures were the only ones to

demonstrate mild Type I error inflation (0.075-0.10).

Table 8. Type I Error Rate for Conditional Measures by Design

DESign Epooled Eweighted E)(Z Dpooled Dweighted D)(Z
Balanced 0.021 0.021 0.016 0.017 0.017 0.012
Proportional 0.022 0.022 0.018 0.020 0.015 0.016
Mixed 0.021 0.021 0.016 0.018 0.016 0.013

Figure 8 shows density plots of the Type I error rates. Both measures show conservative
Type I error rates, with densities peaking around 0.01. However, both also show marked positive
skew. The maximum value for £y, is 0.083, and for D,», it is 0.10. Overall, 14 of 7,300
conditions (5/3,150 E,; and 9/3,150 D,2) were found to have elevated Type I error rates (Table
9). All but two instances were associated with the smallest sample size of 50. Type I inflation for

E,» with a sample size of 50 was also noted by Donoghue and Eckerly (2024).

Figure 8. Density Plot of D,z and E;2 for Null Case
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Table 9. Conditions in Which E;2 and D, Measures Showed Elevated Type I Error Rates

Model N categories N cases Design bo ao Measure Type |
2PL 2 100 Mixed 0.5 1 E 0.080
2PL 2 1,000 Balanced 0.5 1.5 E 0.077
2PL 2 50 Balanced 1 1.5 E 0.076
2PL 2 50 Proportional 1 0.7 E 0.083
2PL 2 50 Mixed 0.5 2 E 0.076
GPCM 5 50 Proportional 1 0.7 D 0.085
GRM 5 50 Mixed 1 0.7 D 0.076
GRM 5 50 Proportional -1 0.7 D 0.096
GRM 5 50 Proportional -1 1 D 0.100
GRM 5 50 Proportional -1 1.3 D 0.076
GRM 5 50 Proportional -0.5 0.7 D 0.090
GRM 5 50 Proportional 0.5 0.7 D 0.097
GRM 5 50 Proportional 1 0.7 D 0.084
GRM 5 50 Proportional 1 1 D 0.096

Note. 2PL = two-parameter logistic. D = D-statistic; E = E-statistic GPCM = generalized partial credit model; GRM =
graded response model.

Because of the overall good Type I behavior for all of the statistics, ANOVA analyses

were deemed of limited interest and so are not presented here.

Detection/Power

Table 10 provides summary statistics for the nonnull case. All measures demonstrate
good detection rates, with the median falling at 1.0 and the first quartile at 0.5 or higher. £, and
D,> show lower values than the pooled or weighted statistics. Also, the D-based omnibus

statistics have somewhat lower means than the E-based statistics.

Table 10. Overall Detection Rates for Omnibus Measures

Statistic Epooled Eweighted Eyz Dpooled Dweighted Dy2
Min 0.00 0.00 0.00 0.00 0.00 0.00
1st quartile 0.70 0.76 0.58 0.66 0.70 0.52
Median 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.78 0.79 0.77 0.77 0.78 0.75
3rd quartile 1.00 1.00 1.00 1.00 1.00 1.00
Max 1.00 1.00 1.00 1.00 1.00 1.00

To determine which factors had the largest effect on detection rates, a series of
descriptive ANOVAs was conducted. As earlier, an effect size criterion of n? > 0.01 was
adopted. Table 11 shows results for the E-statistics, and Table 12 shows results for the D-

statistics.
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Table 11. Selected Analysis of Variance Results Detection for E-Statistics

Epooled Eweighted ExZ
Source df ANOVA SS n? ANOVA SS n? ANOVA SS n?

M 2 28.85 0.003 23.44 0.002 2.9 0.000
K 3 28.12 0.003 25.09 0.003 3.95 0.000
N 5 527.69 0.053 446.32 0.046 1,100.05 0.112
D 2 11.77 0.001 0.04 0.000 0.30 0.000
B 4 5.65 0.001 0.05 0.000 1.12 0.000
Db 4 8,318.19 0.828 7,872.32 0.814 6,789.87 0.69
A 4 9.79 0.001 9.6 0.001 59.49 0.006
Aalt 4 26.24 0.003 21.69 0.002 8.61 0.001
M x Db 8 65.88 0.007 111.28 0.012 186.92 0.019
N x Db 20 403.84 0.04 320.08 0.033 668.48 0.068
A x Aalt 16 333.82 0.033 328.89 0.034 271.69 0.028
Total 75,599 10,044.33 9,675.77 9,838.81

Note. Effect sizes n% > .01 are in boldface. A = ao; Aalt=aar; ANOVA = analysis of variance; B = bo; D = rescore design;
Db = bshit; K = number of response categories; M = item response theory model; N = number of cases.

Table 12. Selected Analysis of Variance Results Detection for D-Statistics

Dpooled Dweighted Dx2
Source df ANOVA SS n? ANOVA SS n? ANOVA SS n?

M 2 53.57 0.005 64.07 0.006 30.00 0.003
K 3 54.74 0.005 64.89 0.006 26.44 0.003
N 5 596.53 0.058 534.49 0.053 1,112.71 0.107
D 2 11.05 0.001 1.05 0.000 1.00 0.000
B 4 8.71 0.001 2.94 0.000 5.78 0.001
Db 4 8,490.22 0.824 8,243.82 0.813 7,535.07 0.725
A 4 10.81 0.001 8.56 0.001 48.35 0.005
Aalt 4 22.5 0.002 19.49 0.002 8.58 0.001
M x Db 8 63.8 0.006 95.44 0.009 116.49 0.011
N x Db 20 457.03 0.044 388.24 0.038 733.77 0.071
A x Aalt 16 338.88 0.033 337.98 0.033 288.42 0.028
Total 75,599 10,044.33 9,675.77 9,838.81

Note. Effect sizes n? > .01 are in boldface. A = ao; Aalt=aar; ANOVA = analysis of variance; B = bo; D = rescore design;
Db = bshitt; K = number of response categories; M = item response theory model; N = number of cases.

For all statistics, the interaction of number of cases N and bshirt is flagged as salient, as are
the main effects. The ao x aarrinteraction is also flagged for all statistics. Finally, the two-way
interaction of model by number of cases is significant for several measures. Figure 9 portrays the
means for the N X bgirr interaction. In all cases, the bgsnini forms a “V,” with little detection for bghir
= 0 increasing to (nearly) perfect detection for bshit = 1.0. The slope is fairly gentle for N = 50.

The “V” becomes steeper for values of bshirt = +0.5.
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Figure 9. Mean Detection Rate for Interaction of bshitt With Sample Size N
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Figure 10 shows the ao x aai interaction. As was noted in the trend results, in all cases,
there is a spike when ao = aai.. In this case, bsnitt # 0; otherwise, it would be a null case. Because
the #-test and d-statistic are sensitive to changes in location, cases when bsnift # 0 are detected
well. Outside of the spike, there is a tendency for detection to increase as the difference between
ao and aai; increases. Also, the curves have a slightly upward tilt moving from left to right,

indicating that larger values of the IRT a-parameter are associated with better detection.

Figure 10. Mean Detection Rates for Interaction of a0 and aai
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Finally, Figure 11 shows the interaction of model and bshiti. The curves tend to be

shallowest for 2PL items and steepest for GPCM items.

Figure 11. Mean Detection Rates by bshitt and IRT Model Used to Generate the Data
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Comparison of Methods

The final comparison concerns comparing the conditional methods. Table 13 gives the
correlations between the omnibus measures. All correlations are >0.95. Given the high
correlations, results are likely to be similar across methods. However, the correlation loses
information about the level of the variables, a critical feature of a significance test. It is therefore
of interest to see what proportion of the time each method gives a better detection rate than the
other. Because this is inherently a question of order, the d-statistic was used for these
comparisons. Although the comparisons are paired, the original omnibus d,.» loses
interpretability as a probability. Thus the independent d is used as an effect size measure for
these comparisons. The mixed rescore design was used due to computer memory limitations.*
The comparisons of methods are presented in Table 14. Positive numbers indicate that the
method listed in the column is higher than the method listed in the row. First, the E-statistics
outperformed the similarly defined D-statistics: Epooled 1s d = 0.01 higher than Dpooled, Eweighted 18 d
= 0.018 higher, and E,; is d = 0.021 higher than D,». Second, the weighted version of the statistic
produced the best results: Eweighted 1S 0.012 higher than Epooled and 0.058 higher than E,». For D-

statistics, Dweighted Was not significantly lower than Dpooled (d = —0.006) and was significantly
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higher than D,», d = 0.061. Overall, Eweighted had the best performance, being higher than the
other methods 1.2%—7.9% of the time.

Table 13. Correlations Among Omnibus Measures for Detection Rates

Statistic Epooled Eweighted Ey2 Dpooled Dweighted Dy2
Epooled -
Eweighted 0.987 —_
Ex2 0.957 0.962 -
Dpooled 0.997 0.981 0.952 -
Dweighted 0.991 0.994 0.958 0.991 -
Dy2 0.971 0.965 0.989 0.973 0.974 —

Table 14. d-Statistics for Comparison of Conditional Measures

Statistic Epooled Eweighted Ex Dpooled Dweighted Dy2
Epooled —
Eweighted -0.012 —
Ex2 0.047 0.058 -
Dpooled 0.010 0.022 -0.037 —
Duweighted 0.006 0.018 -0.041 -0.003 —
Dy2 0.067 0.079 0.021 0.057 0.061 -

Note. Positive entries indicate that the method listed in the column outperformed the method in the row. Boldface
entries differ significantly from 0.0.

Discussion

This work compared methods of analyzing rescore data. Results for the trend analyses
support the findings in Donoghue et al. (2022) that treating the rescore table as a two-way
contingency table can yield very misleading results. Type I error was adequately controlled only
when the rescore design was proportional to the Occasion A margins. As noted earlier, there may
be good reasons to deviate from a strictly proportional design. This is especially true if some
categories have a low proportion of responses. It may be critical to have sufficient numbers of
responses in these categories to diagnose errors for retraining if the scoring is amiss. As an
example, the National Assessment of Educational Progress uses a mixed design similar to that
used in this study. Part of the reason for the design is to ensure sufficient instances to diagnose
and remediate problems in applying the rubric even in the presence of unpopular categories.

The results for the E-statistics largely replicate the results in Donoghue and Eckerly
(2024). The statistics have well-controlled Type I error behavior and good power. The novel
contribution of this report is the use of Cliff’s (1993) d in the context of monitoring across

occasion trend scoring. When analyzing the rescore table as a two-way contingency table, the
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paired d-statistics showed the same poor control of Type I error seen for the #-test. When
appropriately analyzing the data using conditional analysis (£-statistics and D-statistics), the
Type I error rate was well controlled regardless of the trend study design.

In comparing the E-statistics to the D-statistics, the results are very similar. The ordinal
D-statistics exhibited slightly less power than the E-statistics. On the basis of the comparison of
the methods, the best overall method was Eweighted. The advantage was not large; better results
were obtained in 1.2%—7.9% of the data sets. The behaviors of £y, and Dy, showed similar
patterns. Overall, the Type I error rates of the indexes were quite conservative. However, they
were also the only indexes to show inflated (>0.075) Type I error rates. Modified versions of
these statistics may yield better (less conservative) Type I error rates and a corresponding
increase in power.

The simulation contained in this report was large. However, there remain some important
limitations. The most important limitation is the IRT models used to generate the data. The IRT
d-parameters were equally spaced, which tended to create symmetric marginal distributions of
scores, especially for the balanced design. This may have advantaged the E-statistics indexes
based on the #-test, as Feng and Cliff (2004) found that the d-statistic showed more advantage
over the z-test when the distributions of the two groups differed in shape as well as in location. It
would be useful to extend this work to asymmetric IRT d-parameters. Another interesting option
would be to use probabilities based on empirical rescore tables. The challenge in such an

approach is how to manipulate the shift in difficulty.

Conclusion

This report has two main takeaways. The most important is that treating an across-
occasions rescore table as a two-way contingency table derived from multinomial sampling can
lead to very misleading results and so should not be done. Instead, score monitoring needs to
acknowledge the product-multinomial sampling of the rescore table and monitor based on the
conditional probabilities that are invariant to the rescore design—specified marginal distribution.
To provide a meaningful comparison, the within—Occasion A rescore data need to be utilized.
Using this information allows for defensible tests for each score category and for the
computation of omnibus statistics with accurate Type I error control and good power to detect

scoring drift when it occurs.
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This study demonstrates that appropriate ordinal measures can function well in rater
monitoring. The omnibus measures displayed good Type I error rate controls across the rescore
designs. The omnibus measures were also powerful in detecting rater drift, especially in changes
in rater severity.

From one view, the similarity of the results for the D-statistics with those of the E-
statistics can be seen as giving little reason to shift from #-test-based measures. The other view is
that there is little reason to use inappropriate ¢-tests. The d-statistics match the ordinal nature of
CR scores. Second, the results show little to no loss of power to detect misfit. Finally, the d-
statistic has a natural use as an effect size: what proportion of Occasion B scores were higher
than Occasion A scores, as opposed to the opposite.

Results of this study inform practice for monitoring trend scoring. This study gives
concrete guidance for the best way to design and analyze trend rescore studies. CR scoring is
expensive, and changes in scoring can result in biased estimates of Occasion A to Occasion B
change. In extreme cases, it may necessitate treating the item as separate in the two assessments
or even not using (“dropping”) it at Occasion B. Assuming that rescored responses are
representative, dependent sampling has the potential to improve monitoring. The E-statistics and
D-statistics maintained good Type I error control and showed good power regardless of the

rescore design, making them useful in this setting.
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Appendix

Results for Trend Analysis of Stuart’s Q

This appendix presents results for the measure of marginal homogeneity, Stuart’s (1955)
QO-statistic. Because the measure requires paired data, it could be computed only for trend
analysis. In trend analysis, the scores are paired. A common test to determine if scores at
Occasion B are lower or higher than at Occasion A is a paired ¢-test. More recently, Sgammato

and Donoghue (2018) suggested using Stuart’s (1955) O-statistic in place of the paired #-test:

0=dV'd, (A1)

where d is the vector of differences in marginal proportions and V is the covariance matrix
obtained under the assumption that the two sets of margins are identical (marginal homogeneity).
Sgammato and Donoghue found that Q was more powerful than the paired #-test in some
conditions, whereas there were very few cases in which the observed #-test was significant and QO
was not. They therefore recommended use of Q instead of the paired #-test.

Because the Occasion A data are distinct from the Occasion B data, there is no
information to estimate the covariance matrix V. Therefore Q cannot be applied to the

conditional analysis data.

Trend Analysis Using Q

Table A1 presents the ANOVA results for Q.

The D (Rescore Design X B [bo] * N [number of cases]) was identified as salient, as were
each of the constituent main effects and two-way interactions. None of the other two-way or
three-way interactions were identified as salient. Figure A1 shows the three-way interaction.

As Figure A1 makes clear, the Type I error rate is grossly inflated for the balanced design,
while it is well controlled for the proportional design. As would be expected, the mixed design
falls between these two extremes but generally displays inflated Type I error. One unexpected
feature of Figure Al is that, especially for larger samples, the O-statistic remains sensitive,
incorrectly flagging results at a rate higher than the nominal Type I error rate. This was
unexpected, as the statistic shows excellent control for the proportional design. Thus the finding

warrants further study in the future.
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Table A1. Selected Analysis of Variance Results of Type I Error Rate for Q

Using Ordinal Rescore Measures to Monitor Rater Drift

2

Variable ANOVA SS n

M 2.08 0.004
K 5.26 0.010
N 83.74 0.157
D 230.01 0.432
B 57.57 0.108
A 0.35 0.001
M x N 0.64 0.001
M x D 1.39 0.003
M xB 2.40 0.005
M x A 0.59 0.001
KxN 0.79 0.001
KxD 2.57 0.005
KxB 3.06 0.006
KxA 3.85 0.007
N x D 46.32 0.087
N x B 7.14 0.013
N x A 0.04 0.000
DxB 31.20 0.059
DxA 0.30 0.001
BxA 0.05 0.000
NxDxB 14.46 0.027
Total 532.76

Note. Effect sizes n? 2 .01 are in boldface. ANOVA SS = analysis of variance sum of squares; B = bo; D = rescore

design; K = number of response categories; M = item response theory model; N = number of cases.

Figure Al. Type I Error Rates for Stuart’s Q as a Function of Design, bo, and NV
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Power Under the Proportional Design

As was found for the other measures when using trend analysis, O exhibited inflated Type
I error for the balanced design and the mixed design. Analysis of the detection of a true
difference was restricted to the proportional design. Table A2 presents an ANOVA for the

detection rates.

Table A2. Selected Analysis of Variance Results for Q for Detection (Power), Proportional

Design Only
Variable df ANOVA SS n?

M 2 5.97 0.002
K 3 3.17 0.001
N 5 262.96 0.086
B 4 1.29 0.000
Db 4 2028.49 0.661
A 4 4.66 0.002
Aalt 4 5.62 0.002
M x N 10 33.13 0.011
M x B 8 0.08 0.000
M x Db 8 112.44 0.037
M x A 8 6.33 0.002
M x Aalt 8 6.30 0.002
KxN 15 1.51 0.000
KxB 12 0.08 0.000
K x Db 12 5.06 0.002
KxA 12 0.97 0.000
K x Aalt 12 3.27 0.001
N x Db 20 156.69 0.051
N x A 20 20.33 0.007
N x Aalt 20 14.38 0.005
B x Db 16 9.88 0.003
BxA 16 0.02 0.000
B x Aalt 16 0.14 0.000
Db x A 16 28.39 0.009
Db x Aalt 16 27.16 0.009
A x Aalt 16 86.92 0.028
Total 25,199 3067.5

Note. Effect sizes n? > .01 are in boldface. A = ao; Aalt=aar; ANOVA = analysis of variance; B = bo; D = rescore design;
Db = bshit; K = number of response categories; M = item response theory model; N = number of cases.

Compared to Table A1, design is not present, as it is held constant for this analysis. On

the other hand, both bsnit and aaic are now included in the analysis. Again, an effect size criterion
of 1* >.01 is adopted. For this analysis, NV, bshifi, and their interaction are identified as salient.

Figure A2 gives the means for this interaction.
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Figure A2. Detection Rates for Stuart’s Q by bshitt and Sample Size N
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The interaction of a¢ and aaic also meets the effect size criterion. Table A3 gives the mean

Table A3. Mean Detection Rate Q-Statistic as a Function of a0 and aait

Value ao

Qalt 0.7 1 1.3 1.5 2
0.7 0.84 0.73 0.78 0.79 0.81
1 0.74 0.91 0.75 0.78 0.81
1.3 0.78 0.76 0.95 0.77 0.79
1.5 0.80 0.78 0.77 0.96 0.78
2 0.81 0.81 0.79 0.78 0.98

One additional effect met the effect size criterion: the interaction of number of cases N

with the IRT model. The means for this are shown in Figure A3. Detection for data generated by

the GPCM model levels off at 200, while the other models show improvement up through a

sample size of 1,000.
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Figure A3. Mean Q-Statistic for Model by Number of Cases vV

0.9-
g
<]
= 0.8- Model
2
o]
2 2PLM
5 — GPCM
2
207" GRM
[
=

06"

50 100 200 400 600 1000
N of Cases

ETS Research Report No. RR-25-15 © 2025 Educational Testing Service 33



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

! The d-statistic is described as ordinal rather than nonparametric. There is a population parameter delta that is being
estimated.

2 The actual distribution of E,; is likely to be much more complicated. However, in this report, we are interested in
how well the approximation works.

3 Results for trend analysis using Stuart’s (1955) QO-statistic are included in the appendix.

4 The analysis was repeated for each of the proportional and balanced designs (only a single rescore design’s data
could be analyzed at a time).
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