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Abstract 

When constructed response items are used on more than one occasion, a natural concern is 

whether the scoring is consistent (e.g. not more lenient or strict) across the occasions. It is 

common to conduct trend scoring in which a set of occasion A responses are re-scored at 

occasion B. The responses are usually selected according to some rescore design, such as being 

balanced (with an equal number from each score category), proportional to the distribution of 

occasion A scores, or a mixed version of these two designs. Recent work has demonstrated that 

treating the two-way table as if it arose from multinomial sampling is incorrect, and can yield 

seriously biased estimates of whether the scores are lower/higher at occasion B. The present 

study builds on these results by incorporating ordinal measures of change. It contrasts the usual 

trend analysis with an alternative analysis that explicitly conditions on the rescore design and 

finds only the latter is effective. Omnibus measures based on combining the individual t-tests/d-

statistics are examined. Measures were somewhat conservative in Type I error control and had 

good power to detect drift. Omnibus measures based on t-tests had marginally higher power, 

having higher correct detection rates than those based on the d-statistic in 1-8% of the cases. The 

difference between the best versions (Eweighted, which is based on t-tests, v. Dweighted, which is 

based on d-statistics) was only 1.8%. 
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Introduction 

Use of constructed response (CR) items is widespread. One advantage of CR items is that 

they require the production of a response, which often taps into different aspects of the domain of 

interest compared to selected responses (Livingston, 2009). A downside to the use of CR items is 

that the responses must be scored. When the same CR items are administered on two occasions, 

occasion A and occasion B, it is important to evaluate whether the scoring is comparable for the 
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administrations. Occasions A and B might be two human scores of responses from two 

administrations of an assessment. However, the same issues arise when comparing, for example, 

human scores to those provided by an automated scoring engine or comparing scores of an 

existing engine to another engine (even if the second engine is a revised/improved version of the 

first). For simplicity, in this paper the original scoring will be referred to as “occasion A” and the 

rescoring will be “occasion B.” 

CR scoring is expensive, and changes in scoring across occasions (i.e. rater drift) can 

result in biased estimates of the change from occasion A to occasion B. In some cases, it may be 

necessary to treat an item as if it were different items at the two occasions. In the most extreme 

cases, it may be necessary to not use (“drop”) the item for occasion B. 

In “trend scoring,” a selection of the occasion A responses are rescored at occasion B and 

the scores are compared. The two sets of scores are usually cross tabulated to form a two-way 

table. In evaluating trend scoring, it is common to treat the table generated as a two-way 

contingency table, arising from multinomial sampling. If the margins are of interest (i.e., are 

occasion B scores higher than occasion A’s) one would then compute either a paired t-test or an 

alternative such as Stuart’s (1955) Q. If agreement was the chief feature of interest, one would 

use a measure such as Cohen’s (1960) kappa or weighted kappa (1973).  

Significance tests of these statistics assume that the table is a sample from some 

population of responses, and that the table follows a multinomial distribution. This is appropriate 

if the set of scores is sampled, and the margins are the observed totals of the observed scores. 

However, this is usually not true of trend scoring. In most cases, the responses from occasion A 

are selected according to some plan, such as a) an equal number from each of the response 

categories, b) select responses proportionate to the occasion A distribution, or c) a mixture of the 

two, such as 50% equal distribution and 50% proportional. We will refer to this planned 

distribution of occasion A responses as the ”rescore design.” 

When papers are selected according to a rescore design, the occasion A margins of the 

rescore table are fixed by the rescore design. In this case, the sampling is no longer multinomial. 

Instead, each level of occasion A scores follows a separate multinomial distribution. Because the 

table margins are fixed by the rescore design, the proper sampling model is a product-

multinomial (Feinberg, 1980, p. 30). Donoghue, et al. (2022) and McClellan, et al. (2023) show 
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that treating the table as if it were multinomial can lead to biased t-statistics and kappa 

coefficients, where the bias can be either positive or negative. 

Table 1 provides examples in which the conclusion would be no drift, scorers are more 

lenient, or scorers are more stringent strictly as a function of the rescore design. Correct analysis 

of the rescore data requires acknowledging the fact that the occasion A margins are fixed. 

Donoghue and Eckerly (2024) suggested computing t-statistics separately within each occasion A 

score point and then aggregating the results. They also suggest three omnibus E-statistic (made 

by combining the individual t-tests). These measures had good Type I error rate and power and 

were not subject to the bias seen in the paired t-test. 

One weakness of that work is that the t-statistic treats the values as interval score, 

whereas the reality is that CR scores are only ordinal indicators of the underlying response 

quality. More recently, Sgammato and Donoghue (2018) recommended using Stuarts’s (1955) Q 

statistic for marginal homogeneity, which treats the margins as nominal. Bowker (1948), Clayton 

(1974) and Agresti (1983) demonstrate tests of marginal homogeneity for ordinal measures, and 

other formed of regression analyses (e.g., Long, 1997). Other measures such as the Mann-

Whitney U or Cliff’s (1993) d-statistic, correctly reflect the ordinal level of measurement. Under 

certain circumstances, these ordinal tests can be more powerful than the t-test (Feng & Cliff, 

2004), and Cliff (1993, 1996ab) notes that many times the ordinal statistics align directly with 

the research question: “Are occasion B scores higher than occasion A?” Unfortunately, these 

measures fail to reflect the product multinomial sampling in rescore tables. 

The purpose of the current study is to bring together these lines of work, using a measure 

that reflects the ordinal nature of the data while simultaneously acknowledging the product-

multinomial sampling scheme. Its unique contribution is the use of ordinal measures (Cliff’s d-

statistic) in the evaluation of a rescoring study. The ordinal d-statistic was chosen because it has 

been shown to have good power, at times exceeding that of the t-test when applied to the same 

data (Feng & Cliff, 2004). In addition, the measure has an intuitive interpretation as an effect 

size: What proportion of the scores for group 1 are higher than group 2, versus the opposite? 

The rest of the paper is organized as follows: First Cliff’s d-statistic is introduced in the 

general case of comparing two independent groups and then extended to the within-subjects case. 

Next, the paper examines trend analysis of rescore data and points out the observation from 

Donoghue et al. (2022) that the usual multinomial sampling assumption does not hold in the 
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presence of a rescore design. Conditional analysis is introduced, and six statistics based on 

conditional analysis are given. That is followed by a large simulation study. Results are presented 

for trend analysis, followed by results for conditional analysis, including comparisons of the six 

conditional analysis measures. Finally, the paper finishes with discussion and concluding 

remarks. 

Cliff’s d-Statistic 

This section introduces the d-statistic in general. Its use in trend analysis is discussed in 

the next section. In the general case of comparing two independent groups, the ordinal1 d-

statistic is defined: 

 
( ) ( )# #X Y Y X

d
mn

> − >
=   (1) 

where function #() indicates the count of cases in which the argument is true, n is the number of 

X scores, and m is the number of Y scores. Cliff (1993) proposed using “dominance relations” to 

address the question: are the scores in group X higher than those in group Y? A dominance 

relation dij is defined as 

 ( )ij i jd sign x y= − . (2) 

which can be arranged into a matrix as shown in Figure 1. Note that the entries indicate whether 

the row value is larger than the column entry. It is also useful to define the marginal proportion: 
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with an analogous definition of the row proportion jd
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The d-statistic can be readily defined in terms of dij. 
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1 The d-statistic is described as ordinal rather than nonparametric. There is a population parameter delta that is 
being estimated. 
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 The standard error of d can is given as: 
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Figure 1. Matrix of Dominance Relations 

    y-scores    
   1 3 4 7 8  d. 

 6 1 1 1 -1 -1 0.2 
x-scores 7 1 1 1 0 -1 0.4 

 9 1 1 1 1 1 1 

 10 1 1 1 1 1 1 

  1 1 1 0.25 0 0.65 
Adapted from Table 1: Illustration of Independent Groups Dominance Analysis, “Dominance Statistics: Ordinal 
Analyses to Answer Ordinal Questions,” by N. Cliff, 1993, Quantitative Methods in Psychology, 114(3), p. 500. 
Copyright 1993 by the American Psychological Association, Inc. 

Cliff (1993) also presented a paired version of the d-statistic, along with associated 

standard error to facilitate significance testing and construction of confidence intervals. In this 

case, rows represent scores in condition X and columns represent the scores in condition Y.  Cliff 

pointed out that three interrelated questions were of interest: 

1.   Within-subject, measured by dw. Are the responses of a subject higher in the Y 

condition than they are in the X condition? This is the diagonal of the dominance 

matrix. 
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2.   Between subject, measured by db. Do different members of the group score higher in 

the Y condition than in the X condition? This compares the off-diagonal elements of 

the dominance matrix. 
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3.   Combined, measured by dbw. Overall, are scores in the Y condition higher than those 

in the X condition? This combines information the whole matrix, i.e., from dw and db. 
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Note that dbw can be larger than 1 and so is no longer interpretable as a probability. 

Approaches to Analyze Trend Scoring Data 

We differentiate two forms of analysis of the cross-occasion data. “Trend analysis” will 

refer to analyzing the rescore table as if it was a two-way table derived from multinomial 

sampling. “Conditional analysis” will refer to explicitly accounting for the product-multinomial 

sampling of the rescore table. 

In trend analysis, the scores are paired. A common test to determine if scores at occasion 

B are lower or higher than occasion B is a paired t-test. For the d-statistic, trend analysis uses the 

paired d-statistics listed above (dw, db and dwb) computed from the rescore table. The dominance 

matrix is constructed, and the statistics are computed according to the equations above. As noted 

above, the three d-statistics ask slightly different questions. For simplicity this paper will focus 

on dwb. Results for dw and db showed the same patterns and so are not presented in the interest of 

space.  

Table 1. 

Example rescore tables with identical conditional row probabilities but differing in trend design 

illustrating difference in t-test and d-statistic 

 Table 1a mean diff = 0, t = 0, dwb = 0, zwb = 0 
  Occasion A Score 
   1 2  

Occasion B 1 25 25 50 
Score 2 25 25 50 

  50 50  
 

    
 Table 1b mean diff = 0.4, t = 6.83, dwb = 0.4, zwb = 6.83 
  Occasion A Score 
   1 2   

Occasion B 1 5 5 10 
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Score 2 45 45 90 
  50 50   
     
 Table 1c mean diff = -0,3, t = -4.66, dwb = -0.6, zwb = -4.61 
  Occasion A Score 
   1 2   

Occasion B 1 40 40 80 
Score 2 10 10 20 

  50 50   

Conditional Analysis 

Because the occasion A margins of the rescore table are fixed by the rescore design, 

comparisons like the trend analysis based on the margins are at best misleading. Statistics that 

are invariant to the margins are the conditional probabilities P(Y|X), the probability of score Y on 

occasion B given that a score of X was observed at occasion A. However, to evaluate the 

conditional probabilities a comparison is needed. Here it is assumed that there was within-

occasion monitoring at occasion A which involved having a second score assigned at occasion A, 

and so a within-occasion rescore table is available. The conditional probabilities from the within-

occasion table are then compared to those from the rescore table (see Donoghue & Eckerly 2024 

for more detail). The key idea is to consider only papers that received a specific score k from the 

occasion A first rater. From the within-occasion score table, extract that row of counts. Extract 

the same row from the rescore table. Finally, compute an independent groups test (t-test or d-

statistic) comparing these two sets of scores. 

One challenge of this approach is that it yields one test statistic for each level of the 

occasion A score. Frequently an omnibus statistic is required to answer the question “overall, are 

occasion B scores higher or lower than occasion A?” To address this, Donoghue and Eckerly 

(2024) proposed three E-statistics, based on different ways of combining the individual t-tests. 

Epooled sums the numerators and denominators and then divides the two to come up with a test 

statistic: 
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Relying on the t-test’s approach to the normal distribution as the degrees of freedom increase, 

tests for this statistic are conducted comparing it to a standard normal distribution. 

The second statistic, Eweighted, weights the individual statistics by their frequency in the 

occasion A scoring, forming a weighted sum of the numerators and a weighted sum of the 

denominators: 
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Eweighted is compared to a standard normal distribution. 

The third statistic, Eχ2, is formed by squaring the individual t-tests: 

 2
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Under the assumption that the individual tests are approximately standard normal, Eχ2 is 

compared to a 2χ variate with degrees of freedom equal to the number of terms summed (the 

number of categories of the occasion A score).2 

Cliff notes that d divided by its standard error is asymptotically distributed as a standard 

normal variable. Based on this, omnibus measures of d were computed, here after referred to a 

D-statistics, that were exact analogs of the E-statistics. 
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2 The actual distribution of Eχ2 is likely to be much more complicated. However, in this paper we are interested in 
how well the approximation works. 
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The difference is that the terms in the summations are individual d-tests instead of t-tests. 

Because the two sets of scores are separate responses in Conditional analysis, only the between-

subjects independent d-test was used for the Conditional analyses. 

One detail in computing the omnibus E- and D-statistics is that, for extreme distributions 

of occasion A scores (typically high a-parameter coupled with extreme b-parameter) it is possible 

that one level might yield a set of scores for which the t-test and d-test could not be computed. In 

these cases, the computation was modified to ignore the level in question. In this case, the 

degrees of freedom for Eχ2 and Dχ2 were modified accordingly. 

Method 

To explore the design space, an extensive simulation study was conducted to examine 

Type I error rate and power. The factors are summarized in Table 2. To model use of the same 

test-taker responses, the same θ (representing the quality of the CR) was used with the occasion 

A and occasion B IRT parameters to generate responses. Data were generated using Python 3.9. 

Most data manipulation and computation of the target statistics was conducted in R 4.2.2 (R 

Core Team, 2022). The exception was that computation of the dependent Cliff d- statistics was 

done using a Java 11 program for better performance. Finally, statistical analysis of the outcome 

data used SAS and R. 

Table 2. Factors Varied in Simulation 

Factor 
# 

Levels Levels 
Number of cases 6 50, 100, 200, 400, 600, 1000 

Rescore Design 3 
Proportional, balanced, mixed (50% 
proportional, 50% balanced) 

Occasion A b-parameter 5 b0  = -1.0, -0.5, 0, 0.5, 1.0 
Change in b-parameter from 
occasion A to occasion B 5 bshift  = -1.0, -0.5, 0, 0.5, 1.0 
Occasion A a-parameter 5 a0 = 0.7, 1.0, 1.3, 1.5, 2.0 
Occasion B a-parameter 5 aalt = 0.7, 1.0, 1.3, 1.5, 2.0 
Number of score categories and IRT 
model 7 2 (2PL), 3, 4, 5 (GPCM or GRM) 
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IRT Models Used 

For dichotomous items, the two-parameter logistic model (2PLM) was used: 

 ( ) ( )( )
( )( )

exp 1.7
1 exp 1.7

a b
P

a b
θ

θ
θ
−

=
+ −

 (16) 

For polytomous items, the graded response model (GRM): 
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was used for half of the items, and the generalized partial credit model (GPCM)  
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was used for the other half. For the polytomous items, b was determined by the value of b0 for 

items without scoring drift, and for items exhibiting drift, b0 + bshift. The category thresholds dk 

were chosen (-0.75, 0.75) for three category items, (-0.75, 0.0, 0.75) for four category items, and 

(-0.75, -0.25, 0.25 0.75) for five-category items. There is no assertion that these parameters are 

equivalent across the two polytomous IRT models. Rather the parameters were chosen to yield 

data that looks like scoring data. 

Data Generation Factors 

As shown in Table 2, the design contained 7 factors, each with several levels. The factors 

were fully crossed. The factors were: 

• Number of response categories and IRT Model (7 levels): The number of response 

categories was 2, 3, 4, or 5. The 2PLM model was used for two-category data, The 

remaining 6 levels come from crossing generating model GRM or GCPM with the 3 

levels of numbers of categories. Note that the same IRT model was used for all scores of 
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an item, although (as described below) the item parameters could be different if the item 

exhibited drift. Holding θ fixed for the two scoring occasions corresponds to the fact that 

underlying quality of the CRs have not changed. Changing the IRT parameters for 

occasion B represents a shift in the overall scoring process (e.g., due to training 

differences) at occasion B. 

• Number of cases (6 values): 50, 100, 200, 400, 600, 1000 

• Occasion A b-parameter b0 (5 values): -1, -0.5, 0, 0.5, 1 

• Change in b-parameter from occasion A to occasion B bshift (5 values): -1, -0.5, 0, 0.5, 

1 

• Occasion A a-parameter a0 (5 values): 0.7, 1.0, 1.3, 1.5, 2.0 

• Occasion B a-parameter aalt (5 values): 0.7, 1.0, 1.3, 1.5, 2.0 

• Rescore Design (3 levels): Balanced, Proportional or Mixed. In the balanced design, an 

equal number of papers were generated for each occasion A response category. In the 

proportional design the number of occasion A papers mirrored the expected distribution 

of occasion A responses. Using the IRT parameters and assuming a N(0, 1) distribution of 

ability, the item response function was evaluated at 41 points [-4, 4]. This was multiplied 

by the height of the normal density at that point and summed to compute the expected 

proportion in that category. This was then multiplied by the number of cases to come up 

with the number of responses for each category. Fractional responses were arbitrarily 

assigned to the lowest response category. For the mixed design, ½ of the papers were 

selected according to the balanced design and ½ were selected according to the 

proportional design. 

The 7 design factors were crossed to yield 7 x 6 x 5 x 5 x 5 x 5 x 3 (78,750) data 

generation conditions. 1000 replications were generated for each cell. In some replications, all 

responses fell into one of the categories, making the paired t-test and Q impossible to compute. 

Another situation was if agreement happened to be perfect (all off-diagonal cells = 0.0) the 

denominator of the t-test is undefined. In a small number of additional conditions, the covariance 

matrix used in Q was singular preventing its inversion. This was associated with extreme 

combinations of b0 and bshift, and high a-parameter values. These replications were replaced until 
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the full 1000 were obtained for each cell. The proportion of the 1000 values that the statistic was 

significant was recorded, and these rates are the outcome measures for the study. 

Analysis Factors 

For trend analysis, the rescore data was treated as a two-way table. Paired t-test and 

Cliff’s paired d-statistics were computed. For conditional analysis, independent groups t-test and 

Cliff’s d-statistic were computed were computed separately for each level of occasion A score. 

One set of values was the within occasion A second score. The other set of values was the 

occasion B score. Thus, there are 4 analyses of each data set:3 

• Trend, paired t-test 

• Trend, Cliff’s paired d-statistic 

• Conditional, t-test. Three omnibus measures were considered 

 Epooled 

 Eweighted 

 Eχ2 

• Conditional, Cliff’s d-statistic. Again, three omnibus version were considered: 

 Dpooled 

 Dweighted 

 Dχ2 

Data Generation 

For each response, aθ value (representing quality of the response) was drawn from a

( )0,1N  distribution. Next, using the IRT model, the probability of each response category 

(conditional on θ ) was computed and then summed to form a cumulative distribution. A uniform 

random number was drawn, and the response category was assigned based upon which of the 

category probability values contained the uniform value. This was the occasion A first score. 

According to the rescore design, if the number of responses for that category had already been 

 
3 Results for Trend analysis using Stuart’s (1955) Q statistic are included in the Appendix. 
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reached, the θ and response were discarded. Another θ was drawn and associated response 

generated. This process continued until the number of responses required by the rescore design 

was obtained. For within occasion A rescores, the same θ  was used with the same item 

parameters. A second uniform random number was drawn and used to assign a within occasion 

re-score response.  

Generation of the cross-occasion rescore table proceeded similarly. To reflect the 

independence of the rescore table from the within-occasion scoring, a new θ value was drawn 

and an occasion A response generated, subject to the constraint on the limits imposed by the 

rescore design. For the occasion B response, the same θ  was used, but the item parameters for 

the second score were chosen according to the condition. These new item parameters were used 

to compute occasion B probabilities, and uniform number then drawn to determine the occasion 

B score. 

The final results of the data generation were two tables with the same row margins (first 

score occasion A, determined by the rescore design). The cell values and column (rescore) totals 

were free to vary. 

Results 

The results will be presented in two phases. The first will report the analyses of the trend 

analysis. The second phase will report the results for the conditional analyses. 

Trend Analyses 

Type I Error 

We first examine the Type I error behavior. The data were subset to the 3150 conditions 

in which the null hypothesis was true: bshift = 0 and a0 = aalt. A descriptive ANOVA was computed 

to identify which factors were associated with large proportions of variance in the Type I error 

rate. A practical effect size of 

2 0.01effect

total

SS
SS

η = ≥      (20) 

was adopted. Selected results are given in Table 1. Note that bshift is not in the ANOVA, because 

it is constant. Similarly, aalt is not included because it must equal a0 in the null condition. Salient 

effects are highlighted in bold. 
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Table 2. Selected ANOVA Results for Paired t-Test and dwb 

      
  t-test dwb 

Variable df ANOVA SS η2 ANOVA SS η2 

M 2 0.03 0.000 0.11 0.000 
K 3 0.04 0.000 0.01 0.000 
N 5 53.76 0.106 94.37 0.220 
D 2 205.25 0.403 124.17 0.289 
B 4 114.26 0.224 70.73 0.165 
A 4 0.16 0.000 0.11 0.000 

M*N 10 0.01 0.000 0.04 0.000 
M*D 4 0.04 0.000 0.11 0.000 
M*B 8 0.02 0.000 0.04 0.000 
M*A 8 0.21 0.000 0.13 0.000 
K*N 15 0.01 0.000 0.03 0.000 
K*D 6 0.05 0.000 0.04 0.000 
K*B 12 0.05 0.000 0.03 0.000 
K*A 12 0.16 0.000 0.17 0.000 
N*D 10 30.09 0.059 46.22 0.108 
N*B 20 16.66 0.033 25.69 0.060 
N*A 20 0.02 0.000 0.04 0.000 
D*B 8 65.82 0.129 41.58 0.097 
D*A 8 0.15 0.000 0.12 0.000 
B*A 16 0.07 0.000 0.05 0.000 

N*D*B 40 20.54 0.040 24.20 0.056 
Total 3149 509.20 

 
429.74  

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0. 

The D (rescore design x B (b0) x N (number of cases) was identified as salient, as were 

each of the constituent main effects and two-way interactions. None of the other two-way or 

three-way interactions were identified as salient. Figures 2 and 3 show the three-way interaction 

for t-test, and the Cliff’s paired d-statistic respectively. As the figures make clear, Type I error 

rate is grossly inflated for the balanced design, while it is well controlled for the proportional 

design. As would be expected, the mixed design falls between these two extremes, but generally 

displays inflated Type I error. Cliff’s d-statistic is not immune to these effects. The pattern 

largely parallels that of the other statistic. 
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Figure 2. Type I Error Rate for t-test as a Function of design, b0 and N 

 

The findings in Figures 2 and 3 parallel the findings in Donoghue et al. (2022) and the 

simulation results of Donoghue and Eckerly (2024). The result is clear: ignoring the sampling 

model and treating rescore data as if the data arise from a multinomial, two-way table can yield 

very misleading results. The exception is when the rescore design specifies numbers of responses 

that are proportional to the occasion A marginal distribution. Note that Type I error is noticeably 

lower for the condition b0 = 0 than it is for the other values. In this condition, the proportions in 

each category are equal. Thus, the balanced design, proportional design and mixed design 

correspond in this condition. 
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Figure 3. Type I Error Rate for dwb-statistic as a Function of Rescore Design, b0 and N 

 

Detection (power) Because of the grossly inflated Type I error rates observed for the 

mixed and balanced conditions, this analysis is restricted to the proportional condition where the 

Type I error rate was well-controlled. Therefore, these results can accurately be termed “power.” 

Table 3 gives selected ANOVA results for detection rates for each of the measures.  
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Table 3. Selected ANOVA Results for Detection (Power) Proportional Design Only 

  t-test z-dwb 

Variable df Anova 
SS 

η2 Anova SS η2  

M 2 5.33 0.002 3.94 0.001 
K 3 6.39 0.002 4.42 0.001 
N 5 99.47 0.033 98.30 0.032 
B 4 0.17 0.000 0.06 0.000 

Db 4 2372.02 0.781 2485.28 0.818 
A 4 1.09 0.000 2.17 0.001 

Aalt 4 8.33 0.003 7.43 0.002 
M*N 10 27.74 0.009 22.72 0.007 
M*B 8 0.74 0.000 0.67 0.000 

M*Db 8 58.26 0.019 43.28 0.014 
M*A 8 1.76 0.001 1.63 0.001 

M*Aalt 8 6.69 0.002 6.15 0.002 
K*N 15 14.19 0.005 12.33 0.004 
K*B 12 0.14 0.000 0.14 0.000 

K*Db 12 16.68 0.005 19.00 0.006 
K*A 12 0.68 0.000 0.88 0.000 

K*Aalt 12 1.98 0.001 2.12 0.001 
N*Db 20 62.61 0.021 67.30 0.022 
N*A 20 9.68 0.003 10.84 0.004 

N*Aalt 20 9.38 0.003 9.43 0.003 
B*Db 16 32.41 0.011 23.25 0.008 
B*A 16 0.29 0.000 0.20 0.000 

B*Aalt 16 0.44 0.000 0.20 0.000 
Db*A 16 11.30 0.004 10.42 0.003 

Db*Aalt 16 20.78 0.007 16.28 0.005 
A*Aalt 16 106.11 0.035 107.76 0.035 
Total 25199 3038.85   3057.28  

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0, Db = bshift, A = a0, Aalt=aalt 

Compared to Table 2, design is not present, as it is held constant for this analysis. On the 

other hand, both bshift and aalt are now included. Again, an effect size criterion of 2 0.01η ≥ is 

adopted. As would be expected, N, bshift and their interaction are identified as salient. Figures 4 

and 5 give this interaction for each of the measures.  
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Figure 4. Interaction of Sample Size N and b-shift for t-test 

 

There is a U-shaped relationship between bshift and detection which is minimal at bshift = 0 

and increases as the value diverges from 0. The steepness of the curve is affected by N. When 

bshift = 0, the only way that the null can be false is if the a-parameters differ. For small samples 

the power is quite poor, but for large samples the power is non-negligible. Referring to table 3, 

the interaction of a0 x aalt was identified as salient. Tables 4 and 5 show this interaction. When 

the two a-parameters differ, there is moderate power. The elevation of the diagonal of equality is 

an artifact of the design. When the two slopes are the same, the bshift must be non-zero. Because 

the measures are more sensitive to the difference in item difficulty, power is relatively good in 

this condition. 
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Figure 5. Detection for dwb by bshift and Sample Size 

 

Table 4. Mean Detection Rate t-test as function of a0 and aalt 

   a0   
aalt 0.7 1 1.3 1.5 2 
0.7 0.90 0.75 0.76 0.76 0.77 

1 0.76 0.95 0.78 0.79 0.80 
1.3 0.79 0.78 0.97 0.79 0.80 
1.5 0.80 0.79 0.79 0.98 0.80 

2 0.81 0.81 0.80 0.80 0.99 

Table 5. Mean Detection Rate dwb Statistic as a Function of a0 and aalt 

   a0   
aalt 0.7 1 1.3 1.5 2 
0.7 0.90 0.75 0.76 0.77 0.78 

1 0.76 0.95 0.78 0.79 0.80 
1.3 0.78 0.78 0.97 0.79 0.80 
1.5 0.79 0.79 0.79 0.98 0.80 

2 0.80 0.81 0.80 0.80 0.99 

Figures 6 and 7 portray this interaction. 
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Figure 6. Interaction of IRT Model and bshift for Detection by t-test

 
Figure 7. Interaction of IRT Model and bshift for Detection by dwb 
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One other interaction was flagged for the paired t-test. The b0 by bshift was identified as 

salient. Figure 8 gives this interaction. 

Figure 8. Mean Detection Rate for t-test for Interaction of b0 and bshift 

 

Conditional Analyses 

Table 6 gives the average Type I error rate for each of the statistics by rescore design. 

Compared to the trend analyses, the overall Type I error rate of all of the omnibus statistics are 

somewhat conservative, and none shows a strong effect for rescore design. Despite their overall 

conservative Type I error rate, the omnibus Eχ2 and Dχ2 measures were the only ones to 

demonstrate mild Type I error inflation (0.075-0.10).  

Table 6.Type I Error Rate for Conditional Measures by Design 

Design Epooled Eweighted Eχ2 Dpooled Dweighted Dχ2 
Balanced 0.021 0.021 0.016 0.017 0.017 0.012 
Proportional 0.022 0.022 0.018 0.020 0.015 0.016 
Mixed 0.021 0.021 0.016 0.018 0.016 0.013 
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Figure 9 shows density plots of the Type I error rate. Both measures show conservative 

Type I error rate, with densities peaking around 0.01. However, both also show marked positive 

skew. The maximum value for Eχ2 is 0.083 and for Dχ2 it is 0.10. Overall, 14 of 7300 conditions 

(5/3150 Eχ2 and 9/3150 Dχ2) were found to have elevated Type I error rate. All but two instances 

were associated with the smallest sample size of 50. Type I inflation for Eχ2 with sample of 50 

was also noted by Donoghue and Eckerly (2024). 

Figure 9. Density Plot of Dχ2 and Eχ2 for Null Case 
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Table 7. Conditions in Which Eχ2 and Dχ2 Measures Showed Elevated Type I Error Rate 

Model N cats N cases Design b0 a0 measure Type_I 
2PL 2 100 Mixed 0.5 1 E 0.080 
2PL 2 1000 Balanced 0.5 1.5 E 0.077 
2PL 2 50 Balanced 1 1.5 E 0.076 
2PL 2 50 Proportional 1 0.7 E 0.083 
2PL 2 50 Mixed 0.5 2 E 0.076 

GPCM 5 50 Proportional 1 0.7 D 0.085 
GRM 5 50 Mixed 1 0.7 D 0.076 
GRM 5 50 Proportional -1 0.7 D 0.096 
GRM 5 50 Proportional -1 1 D 0.100 
GRM 5 50 Proportional -1 1.3 D 0.076 
GRM 5 50 Proportional -0.5 0.7 D 0.090 
GRM 5 50 Proportional 0.5 0.7 D 0.097 
GRM 5 50 Proportional 1 0.7 D 0.084 
GRM 5 50 Proportional 1 1 D 0.096 

Because of the overall good Type I behavior for all of the statistics, ANOVA analyses 

were deemed of limited interest and so are not presented here. 

Detection/Power 

Table 8 provides summary statistics for the non-null case. All measures demonstrate good 

detection rates, with the median falling at 1.0 and the first quartile at 0.5 of higher. Eχ2 and Dχ2 

show lower values than the pooled or weighted statistics. Also, the D-based omnibus statistics 

have somewhat lower means than the E-based statistics. 

Table 8. Overall Detection Rates for Omnibus Measures 

 Epooled Eweighted Eχ2 Dpooled Dweighted Dχ2 
Min 0.00 0.00 0.00 0.00 0.00 0.00 
1st Quartile 0.70 0.76 0.58 0.66 0.70 0.52 
Median 1.00 1.00 1.00 1.00 1.00 1.00 
Mean 0.78 0.79 0.77 0.77 0.78 0.75 
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00 
Max 1.00 1.00 1.00 1.00 1.00 1.00 

To determine which factors had the largest effect on detection rates, a series of 

descriptive ANOVAs was conducted. As above, an effect size criterion of 2 0.01η ≥  was adopted. 

Table 9 shows results for the E-statistics, and Table 10 shows results for the D-statistics.  
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Table 9. Selected ANOVA Results Detection for E-statistics 

    Epooled Eweighted Eχ2 

Source DF ANOVA 
SS η2 ANOVA 

SS η2 ANOVA 
SS η2 

M 2 28.85 0.003 23.44 0.002 2.9 0.000 
K 3 28.12 0.003 25.09 0.003 3.95 0.000 
N 5 527.69 0.053 446.32 0.046 1100.05 0.112 
D 2 11.77 0.001 0.04 0.000 0.30 0.000 
B 4 5.65 0.001 0.05 0.000 1.12 0.000 

Db 4 8318.19 0.828 7872.32 0.814 6789.87 0.69 
A 4 9.79 0.001 9.6 0.001 59.49 0.006 

Aalt 4 26.24 0.003 21.69 0.002 8.61 0.001 
M*Db 8 65.88 0.007 111.28 0.012 186.92 0.019 
N*Db 20 403.84 0.04 320.08 0.033 668.48 0.068 
A*Aalt 16 333.82 0.033 328.89 0.034 271.69 0.028 
Total 75599 10044.33 

 
9675.77 

 
9838.81 

 

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0, Db = bshift, A = a0, Aalt=aalt 

Table 10. Selected ANOVA Results Detection for D-statistics 

    Dpooled Dweighted Dχ2 

Source DF ANOVA 
SS η2 ANOVA 

SS η2 ANOVA 
SS η2 

M 2 53.57 0.005 64.07 0.006 30.00 0.003 
K 3 54.74 0.005 64.89 0.006 26.44 0.003 
N 5 596.53 0.058 534.49 0.053 1112.71 0.107 
D 2 11.05 0.001 1.05 0.000 1.00 0.000 
B 4 8.71 0.001 2.94 0.000 5.78 0.001 

Db 4 8490.22 0.824 8243.82 0.813 7535.07 0.725 
A 4 10.81 0.001 8.56 0.001 48.35 0.005 

Aalt 4 22.5 0.002 19.49 0.002 8.58 0.001 
M*Db 8 63.8 0.006 95.44 0.009 116.49 0.011 
N*Db 20 457.03 0.044 388.24 0.038 733.77 0.071 
A*Aalt 16 338.88 0.033 337.98 0.033 288.42 0.028 
Total 75599 10308.5 

 
10137.8 

 
10392.7  

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0, Db = bshift, A = a0, Aalt=aalt 

For all statistics, the interaction of number of cases N and bshift is flagged as salient, as are 

the main effects. The a0 by aalt interaction is also flagged for all statistics. Finally, the two-way 
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interaction of model by number of cases is significant for several measures. Figure 10 portrays 

the means for the number of cases by bshift interaction. In all cases the bshift forms a “V”, with 

little detection for bshift = 0 increasing to (nearly) perfect detection for bshift = 1.0.   The slope is 

fairly gentle for N = 50. The ‘V” becomes steeper for values of bshift = ± 0.5. 

Figure 10. Mean Detection Rate for Interaction of bshift With Sample Size N 

 

Figure 11 shows the a0 by aalt interaction. As was noted in the trend results, in all cases 

there is a spike when a0 = aalt. In this case bshift≠ 0; otherwise, it would be a null case. Because 

the t-test and d-statistic are sensitive to changes in location, cases when bshift≠ 0 are detected 

well. Outside of the spike, there is a tendency for detection to increase as the difference between 

a0 and aalt increases. Also, the curves have a slightly upward tilt moving from left to right, 

indicating that larger values of the IRT a-parameter are associated with better detection. 
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Figure 11. Mean Detection Rates for Interaction of a0 and aalt 

 

Finally, Figure 12 shows the interaction of model and bshift. The curves tend to be 

shallowest for 2PL items, and steepest for GPCM items. 

Figure 12. Mean Detection Rates by bshift and IRT Model Used to Generate the Data 
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Comparison of Methods 

The final comparison concerns comparing the conditional methods. Table 11 gives the 

correlations between the omnibus measures. All correlations are > 0.95. Given the high 

correlations, results are likely to be similar across methods. However, the correlation loses 

information about the level of the variables, a critical feature of a significance test. It is therefore 

of interest to see what proportion of the time each method gives a better detection rate than the 

other.  Because this is inherently a question of order, the d-statistic was used for these 

comparisons. Although the comparisons are paired, the original omnibus dwb loses 

interpretability as a probability. Thus, the independent d is used as an effect size measure for 

these comparisons. The mixed rescore design was used due to computer memory limitations.4 

The comparisons of methods are presented in Table 12. Positive numbers indicate that the 

method listed in the column is higher than the method listed in the row. First, the E-statistics 

outperformed the similarly defined D-statistics. Epooled is d = 0.01 higher than Dpooled, Eweighted is d 

= 0.018 higher, and Eχ2 is d = 0.021 higher than Dχ2. Second, the weighted version of the statistic 

produced the best results, Eweighted is 0.012 higher than Epooled and 0.058 higher than Eχ2. For D-

statistics, Dweighted was not significantly lower than Dpooled (d = -0.006) and was significantly 

higher than Dχ2, d = 0.061. Overall, Eweighted had the best performance, with being higher than the 

other methods from 1.2% to 7.9% of the time. 

Table 11. Correlations Among Omnibus Measures for Detection Rates 

 Epooled Eweighted Eχ2 Dpooled Dweighted Dχ2 
Epooled ---      

Eweighted 0.987 ---     
Eχ2 0.957 0.962 ---    

Dpooled 0.997 0.981 0.952 ---   
Dweighted 0.991 0.994 0.958 0.991 ---  

Dχ2 0.971 0.965 0.989 0.973 0.974 --- 
 

 

  

 
4 The analysis was repeated for each of the proportional and balanced designs (only a single rescore design’s data 
could be analyzed at a time). 
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Table 12. d-statistics for Comparison of Conditional Measures 

 Epooled Eweighted Eχ2 Dpooled Dweighted Dχ2 
Epooled ---      
Eweighted -0.012 ---     
Eχ2 0.047 0.058 ---    
Dpooled 0.010 0.022 -0.037 ---   
Dweighted 0.006 0.018 -0.041 -0.003 ---  
Dχ2 0.067 0.079 0.021 0.057 0.061 --- 
Note. Positive entries indicate that the method listed in the column outperformed the method in the row. Bold entries 
differ significantly from 0.0. 

Discussion 

This work compared methods of analyzing rescore data. Results for the trend analyses 

support the findings in Donoghue et al. (2022) that treating the rescore table as a two-way 

contingency table can yield very misleading results. Type I error was adequately controlled only 

when the rescore design was proportional to the occasion A margins. As noted earlier, there may 

be good reasons to deviate from a strictly proportional design. This is especially true if some 

categories have a low proportion of responses. It may be critical to have sufficient numbers of 

responses in these categories to diagnose errors for retraining if the scoring is amiss. As an 

example, the National Assessment of Educational Progress (NAEP) uses a mixed design similar 

to that used in this study. Part of the reason for the design is to ensure sufficient instances to 

diagnose and remediate problems in applying the rubric even in the presence of unpopular 

categories. 

The results for the E-statistics largely replicate the results in Donoghue and Eckerly 

(2024). The statistics have well-controlled Type I error behavior and good power. The novel 

contribution of this paper is the use of Cliff’s (1993) d-statistics in the context of monitoring 

across occasion trend scoring. When analyzing the rescore table as a two-way contingency table, 

the paired d-statistics showed the same poor control of Type I error seen for the t-test. When 

appropriately analyzing the data using conditional analysis (the E-statistics and D-statistics) the 

Type I error rate was well-controlled regardless of the trend study design. 

In comparing the E-statistics to the D-statistics, the results are very similar. The ordinal 

D-statistics exhibited slightly less power than the E-statistics. Based on the comparison of the 

methods, the best overall method was Eweighted. The advantage was not large; better results were 

obtained in 1.2% to 7.9% of the data sets. The behavior of the Eχ2 and Dχ2 showed a similar 
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pattern to one another. Overall, the Type I error rate of the indexes were quite conservative. 

However, they were also the only indexes that showed inflated (> 0.075) Type I error rates. 

Modified versions of these statistics may yield better (less conservative) Type I error rates and 

corresponding increase in power. 

The simulation contained in this paper was large. However, there remain some important 

limitations. The most important limitation is the IRT models used to generate the data. The IRT 

d-parameters were equally spaced, which tended to create symmetric marginal distributions of 

scores, especially for the balanced design. This may have advantaged the E-statistics indices 

based on the t-test, as Feng & Cliff (2004) found that the d-statistic showed more advantage over 

the t-test when the distributions of the two groups differed shape as well as location. It would be 

useful to extend this work to asymmetric IRT d-parameters. Another interesting option would be 

to use probabilities based on empirical rescore tables. The challenge in such an approach is how 

to manipulate the shift in difficulty. 

Conclusion 

There are two main take-aways from the present work. The most important is that treating 

an across-occasions rescore table as a two-way contingency table derived from multinomial 

sampling can lead to very misleading results and so should not be used. Instead, monitoring of 

scoring needs to acknowledge the product-multinomial sampling of the rescore table, and 

monitor based on the conditional probabilities that are invariant to the rescore-design specified 

marginal distribution. To provide a meaningful comparison, the within occasion A rescore data 

need to be utilized. Using this information allows defensible tests for each score category, and 

the computation of omnibus statistics with accurate Type I error control and good power to detect 

scoring drift when it occurs.  

This study demonstrates that appropriate ordinal measures can function well in rater 

monitoring. The omnibus measures displayed good Type I error rate controls across the rescore 

designs. The omnibus measures were also powerful in detecting rater drift, especially in changes 

in rater severity. 

From one view, the similarity of results for D-statistics with those of the E-statistics can 

be seen as giving little reason to shift from t-test-based measures. The other view is that there is 

little reason to use inappropriate t-test. The d-statistics match the ordinal nature of CR scores. 

Second, the results show little/no loss of power to detect misfit. Finally, the d-statistic has a 
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natural use as an effect size: What proportion of occasion B scores were higher than occasion A, 

as opposed to the opposite. 

Results of this study inform practice for monitoring trend scoring. This study gives 

concrete guidance for the best way to design and analyze trend rescore studies. CR scoring is 

expensive and changes in scoring can result in biased estimates of occasion A – occasion B 

change. In extreme cases it may necessitate treating the item as separate in the two assessments, 

or even not using (“dropping”) it at occasion B. Assuming that rescored responses are 

representative, dependent sampling has the potential to improve monitoring. The E-statistic and 

D-statistics maintained good Type I error control and showed good power regardless of the 

rescore design, making them useful in this setting. 
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Appendix 

Results for Trend Analysis of Stuart’s Q 

This appendix presents results for the measure of marginal homogeneity, Stuart’s (1959) 

Q statistic. Because the measure requires paired data, it could only be computed for trend 

analysis. In trend analysis, the scores are paired. A common test to determine if scores at 

occasion B are lower or higher than occasion A is a paired t-test. More recently, Sgammato and 

Donoghue (2018) suggested using Stuart’s (1955) Q-statistic in place of the paired t-test.  

 Q = -1d'V d   (A1) 

where d is the vector of differences in marginal proportions and V is the covariance matrix of 

obtained under the assumption that the two sets of margins are identical (marginal homogeneity). 

Sgammato and Donoghue found that Q was more powerful that the paired t-test in some 

conditions, while there were very few cases where the observed t-test was significant and Q was 

not. They therefore recommended use of Q instead of the paired t-test. 

Because the occasion A data are distinct from the occasion B data, there is no information 

to estimate the covariance matrix V. Therefore, Q cannot be applied to the conditional analysis 

data. 

Trend Analysis Using Q 

Table A1 presents the ANOVA results for Q. 

Table A1. Selected ANOVA Results of Type I Error Rate for Q 

Variable ANOVA SS η2 
M 2.08 0.004 
K 5.26 0.010 
N 83.74 0.157 
D 230.01 0.432 
B 57.57 0.108 
A 0.35 0.001 

M*N 0.64 0.001 
M*D 1.39 0.003 
M*B 2.40 0.005 
M*A 0.59 0.001 
K*N 0.79 0.001 
K*D 2.57 0.005 
K*B 3.06 0.006 
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K*A 3.85 0.007 
N*D 46.32 0.087 
N*B 7.14 0.013 
N*A 0.04 0.000 
D*B 31.20 0.059 
D*A 0.30 0.001 
B*A 0.05 0.000 

N*D*B 14.46 0.027 
Total 532.76 

 

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0. 
 

The D (rescore design x B (b0) x N (number of cases) was identified as salient, as were 

each of the constituent main effects and two-way interactions. None of the other two-way or 

three-way interactions were identified as salient. Figure A1 shows the three-way interaction.  

Figure A1. Type I Error Rates for Stuart’s Q as a Function of Design, b0 and N 

 

As Figure A1 makes clear, Type I error rate is grossly inflated for the balanced design, 

while it is well controlled for the proportional Design. As would be expected, the mixed design 

falls between these two extremes, but generally displays inflated Type I error. One unexpected 

feature of Figure A1 is that, especially for larger samples, the Q-statistic remains sensitive, 
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incorrectly flagging results at a rate higher than the nominal Type I error rate. This was 

unexpected, as the statistic shows excellent control for the proportional design. Thus, the finding 

warrants further study in future. 

Power Under the Proportional Design 

As was found for the other measures when using trend analysis, Q exhibited inflated Type 

I error for the balanced design and the mixed design.  Analysis. of the detection of a true 

difference was restricted to the proportional design. Table A2 presents an ANOVA for the 

detection rates. 

Table A2. Selected ANOVA Results for Q for Detection (Power), Proportional Design Only 
Variable df Anova SS η2 

M 2 5.97 0.002 
K 3 3.17 0.001 
N 5 262.96 0.086 
B 4 1.29 0.000 

Db 4 2028.49 0.661 
A 4 4.66 0.002 

Aalt 4 5.62 0.002 
M*N 10 33.13 0.011 
M*B 8 0.08 0.000 

M*Db 8 112.44 0.037 
M*A 8 6.33 0.002 

M*Aalt 8 6.30 0.002 
K*N 15 1.51 0.000 
K*B 12 0.08 0.000 

K*Db 12 5.06 0.002 
K*A 12 0.97 0.000 

K*Aalt 12 3.27 0.001 
N*Db 20 156.69 0.051 
N*A 20 20.33 0.007 

N*Aalt 20 14.38 0.005 
B*Db 16 9.88 0.003 
B*A 16 0.02 0.000 

B*Aalt 16 0.14 0.000 
Db*A 16 28.39 0.009 

Db*Aalt 16 27.16 0.009 
A*Aalt 16 86.92 0.028 
Total 25199 3067.5  

Note. Effect sizes η2 > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases, 
K = number of response categories, B = b0, Db = bshift, A = a0, Aalt=aalt 
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Compared to Table A1, design is not present, as it is held constant for this analysis. On 

the other hand, both bshift and aalt are now included in the analysis. Again, an effect size criterion 

of 2 0.01η ≥ is adopted. For this analysis, N, bshift and their interaction are identified as salient. 

Figure A2 gives the means for this interaction.  

Figure A2. Detection Rates for Stuart’s Q-statistic by bshift and Sample Size N 

 

The interaction of a0 and aalt also meets the effect size criterion. Table A3 gives the mean 

detection rates for this interaction. 

Table A3. Mean Detection Rate Q statistic as Function of a0 and aalt 

   a0   
aalt 0.7 1 1.3 1.5 2 
0.7 0.84 0.73 0.78 0.79 0.81 

1 0.74 0.91 0.75 0.78 0.81 
1.3 0.78 0.76 0.95 0.77 0.79 
1.5 0.80 0.78 0.77 0.96 0.78 

2 0.81 0.81 0.79 0.78 0.98 
 

As for t-test and dbw, there is a higher mean detection for Q for cases in which a0 = aalt. In this 

case, bshift ≠ 0, and the statistic is sensitive to this difference. 
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There was one additional effect which met the effect size criterion, the interaction of 

number of cases N with IRT model. The means for this are shown in Figure A3. Detection for 

data generated by the GPCM model levels off at 200, while the other models show improvement 

up through a sample size of 1000. 

Figure A3. Mean Q-statistic for Model by Number of Cases N 
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