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Abstract

When constructed response items are used on more than one occasion, a natural concern is
whether the scoring is consistent (e.g. not more lenient or strict) across the occasions. It is
common to conduct trend scoring in which a set of occasion A responses are re-scored at
occasion B. The responses are usually selected according to some rescore design, such as being
balanced (with an equal number from each score category), proportional to the distribution of
occasion A scores, or a mixed version of these two designs. Recent work has demonstrated that
treating the two-way table as if it arose from multinomial sampling is incorrect, and can yield
seriously biased estimates of whether the scores are lower/higher at occasion B. The present
study builds on these results by incorporating ordinal measures of change. It contrasts the usual
trend analysis with an alternative analysis that explicitly conditions on the rescore design and
finds only the latter is effective. Omnibus measures based on combining the individual #-tests/d-
statistics are examined. Measures were somewhat conservative in Type I error control and had
good power to detect drift. Omnibus measures based on #-tests had marginally higher power,
having higher correct detection rates than those based on the d-statistic in 1-8% of the cases. The
difference between the best versions (Eweighied, Which is based on #-tests, v. Dyeighred, Which 1s
based on d-statistics) was only 1.8%.
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Introduction
Use of constructed response (CR) items is widespread. One advantage of CR items is that
they require the production of a response, which often taps into different aspects of the domain of
interest compared to selected responses (Livingston, 2009). A downside to the use of CR items is
that the responses must be scored. When the same CR items are administered on two occasions,

occasion A and occasion B, it is important to evaluate whether the scoring is comparable for the
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administrations. Occasions A and B might be two human scores of responses from two
administrations of an assessment. However, the same issues arise when comparing, for example,
human scores to those provided by an automated scoring engine or comparing scores of an
existing engine to another engine (even if the second engine is a revised/improved version of the
first). For simplicity, in this paper the original scoring will be referred to as “occasion A” and the
rescoring will be “occasion B.”

CR scoring is expensive, and changes in scoring across occasions (i.e. rater drift) can
result in biased estimates of the change from occasion A to occasion B. In some cases, it may be
necessary to treat an item as if it were different items at the two occasions. In the most extreme
cases, it may be necessary to not use (“drop”) the item for occasion B.

In “trend scoring,” a selection of the occasion A responses are rescored at occasion B and
the scores are compared. The two sets of scores are usually cross tabulated to form a two-way
table. In evaluating trend scoring, it is common to treat the table generated as a two-way
contingency table, arising from multinomial sampling. If the margins are of interest (i.e., are
occasion B scores higher than occasion A’s) one would then compute either a paired #-test or an
alternative such as Stuart’s (1955) Q. If agreement was the chief feature of interest, one would
use a measure such as Cohen’s (1960) kappa or weighted kappa (1973).

Significance tests of these statistics assume that the table is a sample from some
population of responses, and that the table follows a multinomial distribution. This is appropriate
if the set of scores is sampled, and the margins are the observed totals of the observed scores.
However, this is usually not true of trend scoring. In most cases, the responses from occasion A
are selected according to some plan, such as a) an equal number from each of the response
categories, b) select responses proportionate to the occasion A distribution, or ¢) a mixture of the
two, such as 50% equal distribution and 50% proportional. We will refer to this planned
distribution of occasion A responses as the “rescore design.”

When papers are selected according to a rescore design, the occasion A margins of the
rescore table are fixed by the rescore design. In this case, the sampling is no longer multinomial.
Instead, each level of occasion A scores follows a separate multinomial distribution. Because the
table margins are fixed by the rescore design, the proper sampling model is a product-

multinomial (Feinberg, 1980, p. 30). Donoghue, et al. (2022) and McClellan, et al. (2023) show
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that treating the table as if it were multinomial can lead to biased #-statistics and kappa
coefficients, where the bias can be either positive or negative.

Table 1 provides examples in which the conclusion would be no drift, scorers are more
lenient, or scorers are more stringent strictly as a function of the rescore design. Correct analysis
of the rescore data requires acknowledging the fact that the occasion A margins are fixed.
Donoghue and Eckerly (2024) suggested computing ¢-statistics separately within each occasion A
score point and then aggregating the results. They also suggest three omnibus E-statistic (made
by combining the individual #-tests). These measures had good Type I error rate and power and
were not subject to the bias seen in the paired #-test.

One weakness of that work is that the z-statistic treats the values as interval score,
whereas the reality is that CR scores are only ordinal indicators of the underlying response
quality. More recently, Sgammato and Donoghue (2018) recommended using Stuarts’s (1955) O
statistic for marginal homogeneity, which treats the margins as nominal. Bowker (1948), Clayton
(1974) and Agresti (1983) demonstrate tests of marginal homogeneity for ordinal measures, and
other formed of regression analyses (e.g., Long, 1997). Other measures such as the Mann-
Whitney U or Cliff’s (1993) d-statistic, correctly reflect the ordinal level of measurement. Under
certain circumstances, these ordinal tests can be more powerful than the #-test (Feng & CIliff,
2004), and CIiff (1993, 1996ab) notes that many times the ordinal statistics align directly with
the research question: “Are occasion B scores higher than occasion A?” Unfortunately, these
measures fail to reflect the product multinomial sampling in rescore tables.

The purpose of the current study is to bring together these lines of work, using a measure
that reflects the ordinal nature of the data while simultaneously acknowledging the product-
multinomial sampling scheme. Its unique contribution is the use of ordinal measures (Clift’s d-
statistic) in the evaluation of a rescoring study. The ordinal d-statistic was chosen because it has
been shown to have good power, at times exceeding that of the #-test when applied to the same
data (Feng & Cliff, 2004). In addition, the measure has an intuitive interpretation as an effect
size: What proportion of the scores for group 1 are higher than group 2, versus the opposite?

The rest of the paper is organized as follows: First Cliff’s d-statistic is introduced in the
general case of comparing two independent groups and then extended to the within-subjects case.
Next, the paper examines trend analysis of rescore data and points out the observation from

Donoghue et al. (2022) that the usual multinomial sampling assumption does not hold in the
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presence of a rescore design. Conditional analysis is introduced, and six statistics based on
conditional analysis are given. That is followed by a large simulation study. Results are presented
for trend analysis, followed by results for conditional analysis, including comparisons of the six
conditional analysis measures. Finally, the paper finishes with discussion and concluding

remarks.

CIliff’s d-Statistic
This section introduces the d-statistic in general. Its use in trend analysis is discussed in
the next section. In the general case of comparing two independent groups, the ordinal' d-
statistic is defined:

g #(X >Y)-#(Y > X)

(M

mn

where function #() indicates the count of cases in which the argument is true, # is the number of
X scores, and m is the number of Y scores. Cliff (1993) proposed using “dominance relations” to
address the question: are the scores in group X higher than those in group Y? A dominance

relation dj; is defined as
d, =sign(x[ —yj.). )
which can be arranged into a matrix as shown in Figure 1. Note that the entries indicate whether
the row value is larger than the column entry. It is also useful to define the marginal proportion:
2.4,
= —j:1

d, =" 3)
m

with an analogous definition of the row proportiond.,

The d-statistic can be readily defined in terms of dj;.

n m

d,

y

d= i=1 j=1 (4)
mn

! The d-statistic is described as ordinal rather than nonparametric. There is a population parameter delta that is
being estimated.
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The standard error of d can is given as:

n m , oam 5
mZZ(df-_d)er”ZZ(d-f_d) - Z(dy.—d)
§§ _ i=1 j=1 i=l j=1 (5)
mn(m—1)(n—1)
Figure 1. Matrix of Dominance Relations
y-scores
1 3 4 7 8 d.
6 1 1 1 -1 -1 0.2
X-scores 7 1 1 1 0 -1 0.4
9 1 1 1 1 1 1
10 1 1 1 1 1 1
1 1 1 0.25 0 0.65

Adapted from Table 1: Illustration of Independent Groups Dominance Analysis, “Dominance Statistics: Ordinal
Analyses to Answer Ordinal Questions,” by N. Cliff, 1993, Quantitative Methods in Psychology, 114(3), p. 500.
Copyright 1993 by the American Psychological Association, Inc.

CIiff (1993) also presented a paired version of the d-statistic, along with associated
standard error to facilitate significance testing and construction of confidence intervals. In this
case, rows represent scores in condition X and columns represent the scores in condition Y. CIliff
pointed out that three interrelated questions were of interest:

1. Within-subject, measured by d,,.. Are the responses of a subject higher in the ¥

condition than they are in the X condition? This is the diagonal of the dominance

matrix.

R = I— (6)

2. Between subject, measured by dp. Do different members of the group score higher in
the Y condition than in the X condition? This compares the off-diagonal elements of
the dominance matrix.

di' 2 2 2
. Z; ij e 55 +cov(dij,dﬁ)+(n _2)(501,., +s, + 2COV(di_,d,i))
’ n(n—l) ’ % n(n—Z)

3. Combined, measured by dp,. Overall, are scores in the Y condition higher than those

(7

in the X condition? This combines information the whole matrix, i.e., from d, and dp.
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W

d,, =d,+d,, s =s; +s; +2cov(d,.d,) (8)

ZHZdU+Zdﬂ] } 2n(n-1)d,d_

i=1 J#i J#i
n(n —1)(n —2)

Note that dp, can be larger than 1 and so is no longer interpretable as a probability.

where cov(d,,d,)= )

Approaches to Analyze Trend Scoring Data

We differentiate two forms of analysis of the cross-occasion data. “Trend analysis” will
refer to analyzing the rescore table as if it was a two-way table derived from multinomial
sampling. “Conditional analysis” will refer to explicitly accounting for the product-multinomial
sampling of the rescore table.

In trend analysis, the scores are paired. A common test to determine if scores at occasion
B are lower or higher than occasion B is a paired #-test. For the d-statistic, trend analysis uses the
paired d-statistics listed above (d., d» and d.») computed from the rescore table. The dominance
matrix is constructed, and the statistics are computed according to the equations above. As noted
above, the three d-statistics ask slightly different questions. For simplicity this paper will focus
on dy». Results for dy, and d» showed the same patterns and so are not presented in the interest of

space.

Table 1.
Example rescore tables with identical conditional row probabilities but differing in trend design
illustrating difference in #-test and d-statistic

Table 1a mean diff =0,t=0, dw =0, Zwp=0
Occasion A Score

1 2
Occasion B 1 25 25 50
Score 2 25 25 50
50 50

Table 1b mean diff =0.4, t = 6.83, dwp = 0.4, zup = 6.83
Occasion A Score
1 2 |
Occasion B 1 ‘ 5 5 ‘ 10
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Score 2 | 45 45 ‘ 90
| 50 50 |

Table 1c mean diff =-0,3, t =-4.66, dwp =-0.6, Zwp = -4.61
Occasion A Score

1 2
Occasion B 1 40 40 80
Score 2 10 10 20
50 50

Conditional Analysis

Because the occasion A margins of the rescore table are fixed by the rescore design,
comparisons like the trend analysis based on the margins are at best misleading. Statistics that
are invariant to the margins are the conditional probabilities P(Y|X), the probability of score ¥ on
occasion B given that a score of X was observed at occasion A. However, to evaluate the
conditional probabilities a comparison is needed. Here it is assumed that there was within-
occasion monitoring at occasion A which involved having a second score assigned at occasion A,
and so a within-occasion rescore table is available. The conditional probabilities from the within-
occasion table are then compared to those from the rescore table (see Donoghue & Eckerly 2024
for more detail). The key idea is to consider only papers that received a specific score k£ from the
occasion A first rater. From the within-occasion score table, extract that row of counts. Extract
the same row from the rescore table. Finally, compute an independent groups test (z-test or d-
statistic) comparing these two sets of scores.

One challenge of this approach is that it yields one test statistic for each level of the
occasion A score. Frequently an omnibus statistic is required to answer the question “overall, are
occasion B scores higher or lower than occasion A?”” To address this, Donoghue and Eckerly
(2024) proposed three E-statistics, based on different ways of combining the individual #-tests.
Epootea sums the numerators and denominators and then divides the two to come up with a test

statistic:

= (10)
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Relying on the #-test’s approach to the normal distribution as the degrees of freedom increase,
tests for this statistic are conducted comparing it to a standard normal distribution.

The second statistic, Eweignea, Weights the individual statistics by their frequency in the
occasion A scoring, forming a weighted sum of the numerators and a weighted sum of the

denominators:

weighted = (1 1)
E\veighrea 1s compared to a standard normal distribution.
The third statistic, £y, is formed by squaring the individual t-tests:
S 2
E.=>1 (12)

Under the assumption that the individual tests are approximately standard normal, E,» is
compared to a y° variate with degrees of freedom equal to the number of terms summed (the
number of categories of the occasion A score).?

Cliff notes that d divided by its standard error is asymptotically distributed as a standard
normal variable. Based on this, omnibus measures of d were computed, here after referred to a

D-statistics, that were exact analogs of the E-statistics.

_ _k=0
pooled X ( 13 )
2
2.5,
k=0
K
2 Wd;
_ k=0
weighted ~— X (14)
2 2
2 WS,
k=0

2 The actual distribution of Ey, is likely to be much more complicated. However, in this paper we are interested in
how well the approximation works.
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k=0\ S

D, = i[ﬂ] (15)

The difference is that the terms in the summations are individual d-tests instead of #-tests.
Because the two sets of scores are separate responses in Conditional analysis, only the between-
subjects independent d-test was used for the Conditional analyses.

One detail in computing the omnibus £- and D-statistics is that, for extreme distributions
of occasion A scores (typically high a-parameter coupled with extreme b-parameter) it is possible
that one level might yield a set of scores for which the #-test and d-test could not be computed. In
these cases, the computation was modified to ignore the level in question. In this case, the

degrees of freedom for E,, and D,; were modified accordingly.

Method

To explore the design space, an extensive simulation study was conducted to examine
Type I error rate and power. The factors are summarized in Table 2. To model use of the same
test-taker responses, the same 0 (representing the quality of the CR) was used with the occasion
A and occasion B IRT parameters to generate responses. Data were generated using Python 3.9.
Most data manipulation and computation of the target statistics was conducted in R 4.2.2 (R
Core Team, 2022). The exception was that computation of the dependent Clift d- statistics was
done using a Java 11 program for better performance. Finally, statistical analysis of the outcome

data used SAS and R.

Table 2. Factors Varied in Simulation

#
Factor Levels Levels
Number of cases 6 50, 100, 200, 400, 600, 1000
Proportional, balanced, mixed (50%
Rescore Design 3 proportional, 50% balanced)
Occasion A b-parameter 5 bo =-1.0,-0.5,0,0.5, 1.0
Change in b-parameter from
occasion A to occasion B 5 bshir =-1.0,-0.5, 0, 0.5, 1.0
Occasion A a-parameter 5 ap=0.7,1.0,1.3,1.5, 2.0
Occasion B a-parameter 5 aa:=0.7,1.0,1.3,1.5,2.0
Number of score categories and IRT
model 7 2 (2PL), 3,4, 5 (GPCM or GRM)
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IRT Models Used

For dichotomous items, the two-parameter logistic model (2PLM) was used:

exp(l Ta(0- b))

P(0)= 16
( ) l+exp(1.7a(0—b)) (10
For polytomous items, the graded response model (GRM):
F(0)=F -F, (17)
with
1.7a(0-b+d
P =P(x2k|0)= exp(174(0-b+d,)) (18)
l+exp(l.7a(¢9—b+dk ))
was used for half of the items, and the generalized partial credit model (GPCM)
k
exp (1 Ta) (0-b+d, )j
F(0)= (19)

_iexp[1.7a§(9—b+dv)j

v=0

was used for the other half. For the polytomous items, b was determined by the value of by for
items without scoring drift, and for items exhibiting drift, by + bsniri. The category thresholds di
were chosen (-0.75, 0.75) for three category items, (-0.75, 0.0, 0.75) for four category items, and
(-0.75, -0.25, 0.25 0.75) for five-category items. There is no assertion that these parameters are
equivalent across the two polytomous IRT models. Rather the parameters were chosen to yield

data that looks like scoring data.

Data Generation Factors
As shown in Table 2, the design contained 7 factors, each with several levels. The factors

were fully crossed. The factors were:

e Number of response categories and IRT Model (7 levels): The number of response
categories was 2, 3, 4, or 5. The 2PLM model was used for two-category data, The
remaining 6 levels come from crossing generating model GRM or GCPM with the 3

levels of numbers of categories. Note that the same IRT model was used for all scores of
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an item, although (as described below) the item parameters could be different if the item
exhibited drift. Holding 6 fixed for the two scoring occasions corresponds to the fact that
underlying quality of the CRs have not changed. Changing the IRT parameters for
occasion B represents a shift in the overall scoring process (e.g., due to training

differences) at occasion B.
e Number of cases (6 values): 50, 100, 200, 400, 600, 1000
e Occasion A b-parameter by (5 values): -1, -0.5, 0, 0.5, 1

¢ Change in b-parameter from occasion A to occasion B by, (5 values): -1, -0.5, 0, 0.5,

1
e Occasion A a-parameter ay (5 values): 0.7, 1.0, 1.3, 1.5, 2.0
e Occasion B a-parameter a.; (5 values): 0.7, 1.0, 1.3, 1.5, 2.0

e Rescore Design (3 levels): Balanced, Proportional or Mixed. In the balanced design, an
equal number of papers were generated for each occasion A response category. In the
proportional design the number of occasion A papers mirrored the expected distribution
of occasion A responses. Using the IRT parameters and assuming a N(0, 1) distribution of
ability, the item response function was evaluated at 41 points [-4, 4]. This was multiplied
by the height of the normal density at that point and summed to compute the expected
proportion in that category. This was then multiplied by the number of cases to come up
with the number of responses for each category. Fractional responses were arbitrarily
assigned to the lowest response category. For the mixed design, /2 of the papers were
selected according to the balanced design and /2 were selected according to the

proportional design.

The 7 design factors were crossed to yield 7x 6 x 5x 5x 5x 5x 3 (78,750) data
generation conditions. 1000 replications were generated for each cell. In some replications, all
responses fell into one of the categories, making the paired ¢-test and Q impossible to compute.
Another situation was if agreement happened to be perfect (all off-diagonal cells = 0.0) the
denominator of the #-test is undefined. In a small number of additional conditions, the covariance
matrix used in Q was singular preventing its inversion. This was associated with extreme

combinations of by and bsnii, and high a-parameter values. These replications were replaced until
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the full 1000 were obtained for each cell. The proportion of the 1000 values that the statistic was

significant was recorded, and these rates are the outcome measures for the study.

Analysis Factors

For trend analysis, the rescore data was treated as a two-way table. Paired #-test and
Cliff’s paired d-statistics were computed. For conditional analysis, independent groups #-test and
Cliff’s d-statistic were computed were computed separately for each level of occasion A score.
One set of values was the within occasion A second score. The other set of values was the

occasion B score. Thus, there are 4 analyses of each data set:?
e Trend, paired ¢-test
e Trend, Cliff’s paired d-statistic

e Conditional, ¢-test. Three omnibus measures were considered

. Epooled
- Eweighted
n ExZ

e Conditional, Cliff’s d-statistic. Again, three omnibus version were considered:

. Dpooled
. Dweighted
n D 2

Data Generation

For each response, a @ value (representing quality of the response) was drawn from a

N (0,1) distribution. Next, using the IRT model, the probability of each response category

(conditional on &) was computed and then summed to form a cumulative distribution. A uniform
random number was drawn, and the response category was assigned based upon which of the
category probability values contained the uniform value. This was the occasion A first score.

According to the rescore design, if the number of responses for that category had already been

3 Results for Trend analysis using Stuart’s (1955) Q statistic are included in the Appendix.
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reached, the & and response were discarded. Another @ was drawn and associated response
generated. This process continued until the number of responses required by the rescore design
was obtained. For within occasion A rescores, the same & was used with the same item
parameters. A second uniform random number was drawn and used to assign a within occasion
re-score response.

Generation of the cross-occasion rescore table proceeded similarly. To reflect the
independence of the rescore table from the within-occasion scoring, a new @ value was drawn
and an occasion A response generated, subject to the constraint on the limits imposed by the
rescore design. For the occasion B response, the same & was used, but the item parameters for
the second score were chosen according to the condition. These new item parameters were used
to compute occasion B probabilities, and uniform number then drawn to determine the occasion
B score.

The final results of the data generation were two tables with the same row margins (first
score occasion A, determined by the rescore design). The cell values and column (rescore) totals

were free to vary.

Results
The results will be presented in two phases. The first will report the analyses of the trend

analysis. The second phase will report the results for the conditional analyses.

Trend Analyses
Type I Error

We first examine the Type I error behavior. The data were subset to the 3150 conditions
in which the null hypothesis was true: bg:;s = 0 and ag= aar. A descriptive ANOVA was computed
to identify which factors were associated with large proportions of variance in the Type I error
rate. A practical effect size of

SS_..
n* = SS—” >0.01 (20)

total

was adopted. Selected results are given in Table 1. Note that by is not in the ANOVA, because
it is constant. Similarly, a.; is not included because it must equal ay in the null condition. Salient

effects are highlighted in bold.
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Table 2. Selected ANOVA Results for Paired 7-Test and d,.»

t-test dwb
Variable df ~ ANOVASS n2 ANOVA SS n?

M 2 0.03 0.000 0.11 0.000
K 3 0.04 0.000 0.01 0.000
N 5 53.76 0.106 94.37 0.220
D 2 205.25 0.403 124.17 0.289
B 4 114.26 0.224 70.73 0.165
A 4 0.16 0.000 0.11 0.000
M*N 10 0.01 0.000 0.04 0.000
M*D 4 0.04 0.000 0.11 0.000
M*B 8 0.02 0.000 0.04 0.000
M*A 8 0.21 0.000 0.13 0.000
K*N 15 0.01 0.000 0.03 0.000
K*D 6 0.05 0.000 0.04 0.000
K*B 12 0.05 0.000 0.03 0.000
K*A 12 0.16 0.000 0.17 0.000
N*D 10 30.09 0.059 46.22 0.108
N*B 20 16.66 0.033 25.69 0.060
N*A 20 0.02 0.000 0.04 0.000
D*B 8 65.82 0.129 41.58 0.097
D*A 8 0.15 0.000 0.12 0.000
B*A 16 0.07 0.000 0.05 0.000
N*D*B 40 20.54 0.040 24.20 0.056
Total 3149 509.20 429.74

Note. Effect sizes n? > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by.

The D (rescore design x B (bg) x N (number of cases) was identified as salient, as were
each of the constituent main effects and two-way interactions. None of the other two-way or
three-way interactions were identified as salient. Figures 2 and 3 show the three-way interaction
for ¢-test, and the Cliff’s paired d-statistic respectively. As the figures make clear, Type I error
rate is grossly inflated for the balanced design, while it is well controlled for the proportional
design. As would be expected, the mixed design falls between these two extremes, but generally
displays inflated Type I error. Cliff’s d-statistic is not immune to these effects. The pattern
largely parallels that of the other statistic.
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Figure 2. Type I Error Rate for #test as a Function of design, by and N

Balanced Mixed Proportional
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The findings in Figures 2 and 3 parallel the findings in Donoghue et al. (2022) and the
simulation results of Donoghue and Eckerly (2024). The result is clear: ignoring the sampling
model and treating rescore data as if the data arise from a multinomial, two-way table can yield
very misleading results. The exception is when the rescore design specifies numbers of responses
that are proportional to the occasion A marginal distribution. Note that Type I error is noticeably
lower for the condition by = 0 than it is for the other values. In this condition, the proportions in
each category are equal. Thus, the balanced design, proportional design and mixed design

correspond in this condition.
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Figure 3. Type I Error Rate for d,;-statistic as a Function of Rescore Design, by and NV

Balanced Mixed Proportional
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Detection (power) Because of the grossly inflated Type I error rates observed for the
mixed and balanced conditions, this analysis is restricted to the proportional condition where the

Type I error rate was well-controlled. Therefore, these results can accurately be termed “power.”

Table 3 gives selected ANOVA results for detection rates for each of the measures.
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Table 3. Selected ANOVA Results for Detection (Power) Proportional Design Only

t-test Z-dwp
Variable  df Anova n? Anova SS n2
SS
M 2 5.33 0.002 3.94 0.001
K 3 6.39 0.002 4.42 0.001
N 5 99.47 0.033 98.30 0.032
B 4 0.17 0.000 0.06 0.000
Db 4 2372.02 0.781 2485.28 0.818
A 4 1.09 0.000 2.17 0.001
Aalt 4 8.33 0.003 7.43 0.002
M*N 10 27.74 0.009 22.72 0.007
M*B 8 0.74 0.000 0.67 0.000
M*Db 8 58.26 0.019 43.28 0.014
M*A 8 1.76 0.001 1.63 0.001
M*Aalt 8 6.69 0.002 6.15 0.002
K*N 15 14.19 0.005 12.33 0.004
K*B 12 0.14 0.000 0.14 0.000
K*Db 12 16.68 0.005 19.00 0.006
K*A 12 0.68 0.000 0.88 0.000
K*Aalt 12 1.98 0.001 2.12 0.001
N*Db 20 62.61 0.021 67.30 0.022
N*A 20 9.68 0.003 10.84 0.004
N*Aalt 20 9.38 0.003 9.43 0.003
B*Db 16 3241 0.011 23.25 0.008
B*A 16 0.29 0.000 0.20 0.000
B*Aalt 16 0.44 0.000 0.20 0.000
Db*A 16 11.30 0.004 10.42 0.003
Db*Aalt 16 20.78 0.007 16.28 0.005
A*Aalt 16 106.11 0.035 107.76 0.035
Total 25199 3038.85 3057.28

Note. Effect sizes n? > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by, Db = bgs, A = ap, Aalt=a.

Compared to Table 2, design is not present, as it is held constant for this analysis. On the
other hand, both b and aur are now included. Again, an effect size criterion of p* > 0.01is

adopted. As would be expected, N, bsnir and their interaction are identified as salient. Figures 4

and 5 give this interaction for each of the measures.

ETS Research Report (in press) © 2025 Educational Testing Service 17



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

Figure 4. Interaction of Sample Size NV and b-shift for z-test
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There is a U-shaped relationship between by and detection which is minimal at by = 0
and increases as the value diverges from 0. The steepness of the curve is affected by N. When
bsnii= 0, the only way that the null can be false is if the a-parameters differ. For small samples
the power is quite poor, but for large samples the power is non-negligible. Referring to table 3,
the interaction of ap X au was identified as salient. Tables 4 and 5 show this interaction. When
the two a-parameters differ, there is moderate power. The elevation of the diagonal of equality is
an artifact of the design. When the two slopes are the same, the by must be non-zero. Because
the measures are more sensitive to the difference in item difficulty, power is relatively good in

this condition.
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Figure 5. Detection for dy by bsir and Sample Size
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Table 4. Mean Detection Rate 7-test as function of a9 and a.

do
Qak 0.7 1 1.3 15 2
0.7 0.90 0.75 0.76 0.76 0.77
1 0.76 0.95 0.78 0.79 0.80
1.3 0.79 0.78 0.97 0.79 0.80
1.5 0.80 0.79 0.79 0.98 0.80
2 0.81 0.81 0.80 0.80 0.99

Table 5. Mean Detection Rate d,,, Statistic as a Function of a¢ and aa¢

do
Qait 0.7 1 1.3 1.5 2
0.7 0.90 0.75 0.76 0.77 0.78
1 0.76 0.95 0.78 0.79 0.80
1.3 0.78 0.78 0.97 0.79 0.80
1.5 0.79 0.79 0.79 0.98 0.80
2 0.80 0.81 0.80 0.80 0.99

Figures 6 and 7 portray this interaction.
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Figure 6. Interaction of IRT Model and bsuir: for Detection by #test
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Figure 7. Interaction of IRT Model and bz for Detection by d,»
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One other interaction was flagged for the paired #-test. The by by bsnis was identified as

salient. Figure 8 gives this interaction.

Figure 8. Mean Detection Rate for #-test for Interaction of by and bis
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Conditional Analyses

Table 6 gives the average Type I error rate for each of the statistics by rescore design.
Compared to the trend analyses, the overall Type I error rate of all of the omnibus statistics are
somewhat conservative, and none shows a strong effect for rescore design. Despite their overall
conservative Type I error rate, the omnibus £, and D,> measures were the only ones to

demonstrate mild Type I error inflation (0.075-0.10).

Table 6. Type I Error Rate for Conditional Measures by Design

Design ‘ Epooled Eweighted Ex2 Dpooled Duweighted Dy2

Balanced 0.021 0.021 0.016 0.017 0.017 0.012
Proportional 0.022 0.022 0.018 0.020 0.015 0.016
Mixed 0.021 0.021 0.016 0.018 0.016 0.013
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Figure 9 shows density plots of the Type I error rate. Both measures show conservative
Type I error rate, with densities peaking around 0.01. However, both also show marked positive
skew. The maximum value for £, is 0.083 and for D, it is 0.10. Overall, 14 of 7300 conditions
(5/3150 E,2 and 9/3150 D,») were found to have elevated Type I error rate. All but two instances
were associated with the smallest sample size of 50. Type I inflation for E,> with sample of 50

was also noted by Donoghue and Eckerly (2024).

Figure 9. Density Plot of D2 and E;2 for Null Case
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Table 7. Conditions in Which E;2 and D, Measures Showed Elevated Type I Error Rate

Model N cats N cases Design bo o measure Type_|I
2PL 2 100 Mixed 0.5 1 E 0.080
2PL 2 1000 Balanced 0.5 1.5 E 0.077
2PL 2 50 Balanced 1 1.5 E 0.076
2PL 2 50 Proportional 1 0.7 E 0.083
2PL 2 50 Mixed 0.5 2 E 0.076

GPCM 5 50 Proportional 1 0.7 D 0.085

GRM 5 50 Mixed 1 0.7 D 0.076

GRM 5 50 Proportional -1 0.7 D 0.096

GRM 5 50 Proportional -1 1 D 0.100

GRM 5 50 Proportional -1 1.3 D 0.076

GRM 5 50 Proportional -0.5 0.7 D 0.090

GRM 5 50 Proportional 0.5 0.7 D 0.097

GRM 5 50 Proportional 1 0.7 D 0.084

GRM 5 50 Proportional 1 1 D 0.096

Because of the overall good Type I behavior for all of the statistics, ANOVA analyses

were deemed of limited interest and so are not presented here.

Detection/Power

Table 8 provides summary statistics for the non-null case. All measures demonstrate good
detection rates, with the median falling at 1.0 and the first quartile at 0.5 of higher. E,2 and D,2
show lower values than the pooled or weighted statistics. Also, the D-based omnibus statistics

have somewhat lower means than the £-based statistics.

Table 8. Overall Detection Rates for Omnibus Measures

Epooled Eweighted Eyo Dpooled Dweighted Dy»
Min 0.00 0.00 0.00 0.00 0.00 0.00
1st Quartile 0.70 0.76 0.58 0.66 0.70 0.52
Median 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.78 0.79 0.77 0.77 0.78 0.75
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00
Max 1.00 1.00 1.00 1.00 1.00 1.00

To determine which factors had the largest effect on detection rates, a series of
descriptive ANOVAs was conducted. As above, an effect size criterion of 7° > 0.01 was adopted.

Table 9 shows results for the E-statistics, and Table 10 shows results for the D-statistics.
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Table 9. Selected ANOVA Results Detection for E-statistics

Epooled E weighted E)(Z
ANOVA ANOVA ANOVA

Source DF ss n? 5 n? 5 n?
M 2 28.85 0.003 23.44 0.002 2.9 0.000
K 3 28.12 0.003 25.09 0.003 3.95 0.000
N 5 527.69 0.053 446.32 0.046 1100.05 0.112
D 2 11.77 0.001 0.04 0.000 0.30 0.000
B 4 5.65 0.001 0.05 0.000 1.12 0.000
Db 4 8318.19 0.828 7872.32 0.814 6789.87 0.69
A 4 9.79 0.001 9.6 0.001 59.49 0.006
Aalt 4 26.24 0.003 21.69 0.002 8.61 0.001
M*Db 8 65.88 0.007 111.28 0.012 186.92 0.019

N*Db 20 403.84 0.04 320.08 0.033 668.48 0.068
A*Aalt 16 333.82 0.033 328.89 0.034 271.69 0.028

Total 75599 10044.33 9675.77 9838.81

Note. Effect sizes 1> > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by, Db = by, A = ap, Aalt=aa;

Table 10. Selected ANOVA Results Detection for D-statistics

Dpooled D weighted D)(Z
ANOVA ANOVA ANOVA

Source DF 5 n? 5 n? 5 n?
M 2 53.57 0.005 64.07 0.006 30.00 0.003
K 3 54.74 0.005 64.89 0.006 26.44 0.003
N 5 596.53 0.058 53449 0.053 1112.71 0.107
D 2 11.05 0.001 1.05 0.000 1.00 0.000
B 4 8.71 0.001 2.94 0.000 5.78 0.001
Db 4 8490.22 0.824 8243.82 0.813 7535.07 0.725
A 4 10.81 0.001 8.56 0.001 48.35 0.005
Aalt 4 22.5 0.002 19.49 0.002 8.58 0.001
M*Db 8 63.8 0.006 95.44 0.009 116.49  0.011

N*Db 20 457.03 0.044 388.24 0.038 733.77 0.071
A*Aalt 16 338.88 0.033 337.98 0.033 288.42 0.028

Total 75599 10308.5 10137.8 10392.7

Note. Effect sizes 1> > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by, Db = by, A = ap, Aalt=au

For all statistics, the interaction of number of cases N and bgis: 1s flagged as salient, as are

the main effects. The ag by au interaction is also flagged for all statistics. Finally, the two-way
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interaction of model by number of cases is significant for several measures. Figure 10 portrays
the means for the number of cases by bgii interaction. In all cases the by forms a “V”, with
little detection for by = 0 increasing to (nearly) perfect detection for bgni = 1.0. The slope is

fairly gentle for N = 50. The ‘V” becomes steeper for values of by = £ 0.5.

Figure 10. Mean Detection Rate for Interaction of bssix With Sample Size N
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Figure 11 shows the ayp by aa interaction. As was noted in the trend results, in all cases
there is a spike when ap = aa. In this case by # 0; otherwise, it would be a null case. Because
the z-test and d-statistic are sensitive to changes in location, cases when by # 0 are detected
well. Outside of the spike, there is a tendency for detection to increase as the difference between
ao and aq; increases. Also, the curves have a slightly upward tilt moving from left to right,

indicating that larger values of the IRT a-parameter are associated with better detection.

ETS Research Report (in press) © 2025 Educational Testing Service 25



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

Figure 11. Mean Detection Rates for Interaction of ap and a.
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Finally, Figure 12 shows the interaction of model and bg;s. The curves tend to be

shallowest for 2PL items, and steepest for GPCM items.

Figure 12. Mean Detection Rates by buiz and IRT Model Used to Generate the Data
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Comparison of Methods

The final comparison concerns comparing the conditional methods. Table 11 gives the
correlations between the omnibus measures. All correlations are > 0.95. Given the high
correlations, results are likely to be similar across methods. However, the correlation loses
information about the level of the variables, a critical feature of a significance test. It is therefore
of interest to see what proportion of the time each method gives a better detection rate than the
other. Because this is inherently a question of order, the d-statistic was used for these
comparisons. Although the comparisons are paired, the original omnibus d,» loses
interpretability as a probability. Thus, the independent d is used as an effect size measure for
these comparisons. The mixed rescore design was used due to computer memory limitations.*
The comparisons of methods are presented in Table 12. Positive numbers indicate that the
method listed in the column is higher than the method listed in the row. First, the E-statistics
outperformed the similarly defined D-statistics. Epooreq 1s d = 0.01 higher than Dpoored, Eweightea 1S d
= 0.018 higher, and Ej; is d = 0.021 higher than D,>. Second, the weighted version of the statistic
produced the best results, Eyeighea 1s 0.012 higher than Eppoes and 0.058 higher than E,». For D-
statistics, Dweighted Was not significantly lower than Dpooied (d = -0.006) and was significantly
higher than D,», d = 0.061. Overall, E\eignea had the best performance, with being higher than the
other methods from 1.2% to 7.9% of the time.

Table 11. Correlations Among Omnibus Measures for Detection Rates

E, pooled E weighted E X2 Dpooled Dweighted sz
Epooted ---
Eveightea  0.987
Ey» 0.957 0.962 ---
Dpooea 0.997 0.981 0.952
Dyeightea  0.991 0.994 0.958 0.991
Dy, 0.971 0.965 0.989 0.973 0.974

4 The analysis was repeated for each of the proportional and balanced designs (only a single rescore design’s data
could be analyzed at a time).

ETS Research Report (in press) © 2025 Educational Testing Service 27



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

Table 12. d-statistics for Comparison of Conditional Measures

Epooled Eweighted Eyo Dpooled Dweighted Dy>
Epooled ---
Eweighted -0.012 -
Ey> 0.047 0.058 -
Dpooled 0.010 0.022 -0.037 ---
Dweighted 0.006 0.018 -0.041 -0.003 ---
Dy» 0.067 0.079 0.021 0.057 0.061 ---

Note. Positive entries indicate that the method listed in the column outperformed the method in the row. Bold entries
differ significantly from 0.0.

Discussion

This work compared methods of analyzing rescore data. Results for the trend analyses
support the findings in Donoghue et al. (2022) that treating the rescore table as a two-way
contingency table can yield very misleading results. Type I error was adequately controlled only
when the rescore design was proportional to the occasion A margins. As noted earlier, there may
be good reasons to deviate from a strictly proportional design. This is especially true if some
categories have a low proportion of responses. It may be critical to have sufficient numbers of
responses in these categories to diagnose errors for retraining if the scoring is amiss. As an
example, the National Assessment of Educational Progress (NAEP) uses a mixed design similar
to that used in this study. Part of the reason for the design is to ensure sufficient instances to
diagnose and remediate problems in applying the rubric even in the presence of unpopular
categories.

The results for the E-statistics largely replicate the results in Donoghue and Eckerly
(2024). The statistics have well-controlled Type I error behavior and good power. The novel
contribution of this paper is the use of Cliff’s (1993) d-statistics in the context of monitoring
across occasion trend scoring. When analyzing the rescore table as a two-way contingency table,
the paired d-statistics showed the same poor control of Type I error seen for the ¢-test. When
appropriately analyzing the data using conditional analysis (the E-statistics and D-statistics) the
Type I error rate was well-controlled regardless of the trend study design.

In comparing the E-statistics to the D-statistics, the results are very similar. The ordinal
D-statistics exhibited slightly less power than the E-statistics. Based on the comparison of the
methods, the best overall method was Eyeignea. The advantage was not large; better results were

obtained in 1.2% to 7.9% of the data sets. The behavior of the £, and D,, showed a similar
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pattern to one another. Overall, the Type I error rate of the indexes were quite conservative.
However, they were also the only indexes that showed inflated (> 0.075) Type I error rates.
Modified versions of these statistics may yield better (less conservative) Type I error rates and
corresponding increase in power.

The simulation contained in this paper was large. However, there remain some important
limitations. The most important limitation is the IRT models used to generate the data. The IRT
d-parameters were equally spaced, which tended to create symmetric marginal distributions of
scores, especially for the balanced design. This may have advantaged the E-statistics indices
based on the #-test, as Feng & Cliff (2004) found that the d-statistic showed more advantage over
the 7-test when the distributions of the two groups differed shape as well as location. It would be
useful to extend this work to asymmetric IRT d-parameters. Another interesting option would be
to use probabilities based on empirical rescore tables. The challenge in such an approach is how

to manipulate the shift in difficulty.

Conclusion

There are two main take-aways from the present work. The most important is that treating
an across-occasions rescore table as a two-way contingency table derived from multinomial
sampling can lead to very misleading results and so should not be used. Instead, monitoring of
scoring needs to acknowledge the product-multinomial sampling of the rescore table, and
monitor based on the conditional probabilities that are invariant to the rescore-design specified
marginal distribution. To provide a meaningful comparison, the within occasion A rescore data
need to be utilized. Using this information allows defensible tests for each score category, and
the computation of omnibus statistics with accurate Type I error control and good power to detect
scoring drift when it occurs.

This study demonstrates that appropriate ordinal measures can function well in rater
monitoring. The omnibus measures displayed good Type I error rate controls across the rescore
designs. The omnibus measures were also powerful in detecting rater drift, especially in changes
in rater severity.

From one view, the similarity of results for D-statistics with those of the E-statistics can
be seen as giving little reason to shift from ¢-test-based measures. The other view is that there is
little reason to use inappropriate z-test. The d-statistics match the ordinal nature of CR scores.

Second, the results show little/no loss of power to detect misfit. Finally, the d-statistic has a
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natural use as an effect size: What proportion of occasion B scores were higher than occasion A,
as opposed to the opposite.

Results of this study inform practice for monitoring trend scoring. This study gives
concrete guidance for the best way to design and analyze trend rescore studies. CR scoring is
expensive and changes in scoring can result in biased estimates of occasion A — occasion B
change. In extreme cases it may necessitate treating the item as separate in the two assessments,
or even not using (“dropping”) it at occasion B. Assuming that rescored responses are
representative, dependent sampling has the potential to improve monitoring. The E-statistic and
D-statistics maintained good Type I error control and showed good power regardless of the

rescore design, making them useful in this setting.
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Appendix

Results for Trend Analysis of Stuart’s O

This appendix presents results for the measure of marginal homogeneity, Stuart’s (1959)
Q statistic. Because the measure requires paired data, it could only be computed for trend
analysis. In trend analysis, the scores are paired. A common test to determine if scores at
occasion B are lower or higher than occasion A is a paired #-test. More recently, Sgammato and
Donoghue (2018) suggested using Stuart’s (1955) O-statistic in place of the paired #-test.

0=d'v'd (A1)

where d is the vector of differences in marginal proportions and V is the covariance matrix of
obtained under the assumption that the two sets of margins are identical (marginal homogeneity).
Sgammato and Donoghue found that O was more powerful that the paired 7-test in some
conditions, while there were very few cases where the observed #-test was significant and Q was
not. They therefore recommended use of Q instead of the paired #-test.

Because the occasion A data are distinct from the occasion B data, there is no information
to estimate the covariance matrix V. Therefore, O cannot be applied to the conditional analysis

data.

Trend Analysis Using Q
Table A1 presents the ANOVA results for Q.

Table Al. Selected ANOVA Results of Type I Error Rate for Q
Variable ANOVA'SS n?

M 2.08 0.004
K 5.26 0.010
N 83.74 0.157
D 230.01 0.432
B 57.57 0.108
A 0.35 0.001
M*N 0.64 0.001
M*D 1.39 0.003
M*B 2.40 0.005
M*A 0.59 0.001
K*N 0.79 0.001
K*D 2.57 0.005
K*B 3.06 0.006
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K*A 3.85 0.007
N*D 46.32 0.087
N*B 7.14 0.013
N*A 0.04 0.000
D*B 31.20 0.059
D*A 0.30 0.001
B*A 0.05 0.000
N*D*B 14.46 0.027
Total 532.76

Note. Effect sizes n? > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by.

The D (rescore design x B (bg) x N (number of cases) was identified as salient, as were
each of the constituent main effects and two-way interactions. None of the other two-way or

three-way interactions were identified as salient. Figure A1 shows the three-way interaction.

Figure Al. Type I Error Rates for Stuart’s Q as a Function of Design, by and N
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As Figure A1 makes clear, Type I error rate is grossly inflated for the balanced design,
while it is well controlled for the proportional Design. As would be expected, the mixed design
falls between these two extremes, but generally displays inflated Type I error. One unexpected

feature of Figure Al is that, especially for larger samples, the O-statistic remains sensitive,

ETS Research Report (in press) © 2025 Educational Testing Service 33



J. R. Donoghue & A. Sgammato Using Ordinal Rescore Measures to Monitor Rater Drift

incorrectly flagging results at a rate higher than the nominal Type I error rate. This was
unexpected, as the statistic shows excellent control for the proportional design. Thus, the finding

warrants further study in future.

Power Under the Proportional Design

As was found for the other measures when using trend analysis, O exhibited inflated Type
I error for the balanced design and the mixed design. Analysis. of the detection of a true
difference was restricted to the proportional design. Table A2 presents an ANOVA for the

detection rates.

Table A2. Selected ANOVA Results for Q for Detection (Power), Proportional Design Only

Variable df Anova SS n?
M 2 5.97 0.002
K 3 3.17 0.001
N 5 262.96 0.086
B 4 1.29 0.000
Db 4 2028.49 0.661
A 4 4.66 0.002
Aalt 4 5.62 0.002
M*N 10 33.13 0.011
M*B 8 0.08 0.000
M*Db 8 112.44 0.037
M*A 8 6.33 0.002
M*Aalt 8 6.30 0.002
K*N 15 1.51 0.000
K*B 12 0.08 0.000
K*Db 12 5.06 0.002
K*A 12 0.97 0.000
K*Aalt 12 3.27 0.001
N*Db 20 156.69 0.051
N*A 20 20.33 0.007
N*Aalt 20 14.38 0.005
B*Db 16 9.88 0.003
B*A 16 0.02 0.000
B*Aalt 16 0.14 0.000
Db*A 16 28.39 0.009
Db*Aalt 16 27.16 0.009
A*Aalt 16 86.92 0.028

Total 25199 3067.5

Note. Effect sizes 1> > 0.01 are indicated with bold font. D = rescore design, M = IRT model, N = number of cases,
K = number of response categories, B = by, Db = by, A = ap, Aalt=au
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Compared to Table A1, design is not present, as it is held constant for this analysis. On

the other hand, both b and aair are now included in the analysis. Again, an effect size criterion
of* > 0.01is adopted. For this analysis, N, b and their interaction are identified as salient.

Figure A2 gives the means for this interaction.

Figure A2. Detection Rates for Stuart’s Q-statistic by by and Sample Size N
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The interaction of ap and a.i also meets the effect size criterion. Table A3 gives the mean

detection rates for this interaction.

Table A3. Mean Detection Rate Q statistic as Function of ay and a.i

do
Qalt 0.7 1 1.3 15 2
0.7 0.84 0.73 0.78 0.79 0.81
1 0.74 0.91 0.75 0.78 0.81
1.3 0.78 0.76 0.95 0.77 0.79
1.5 0.80 0.78 0.77 0.96 0.78
2 0.81 0.81 0.79 0.78 0.98

As for t-test and dpw, there is a higher mean detection for Q for cases in which ag = au. In this

case, bsniri 7 0, and the statistic is sensitive to this difference.
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There was one additional effect which met the effect size criterion, the interaction of
number of cases N with IRT model. The means for this are shown in Figure A3. Detection for
data generated by the GPCM model levels off at 200, while the other models show improvement
up through a sample size of 1000.

Figure A3. Mean Q-statistic for Model by Number of Cases NV
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